找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Birkhoff–James Orthogonality and Geometry of Operator Spaces; Arpita Mal,Kallol Paul,Debmalya Sain Book 2024 The Editor(s) (if applicable)

[復(fù)制鏈接]
樓主: HARDY
11#
發(fā)表于 2025-3-23 10:19:03 | 只看該作者
Der Taylorsche Satz und Potenzreihen,The concept of smoothness is one of the fundamental aspects of the theory of Banach spaces, both from geometric and analytic points of view. Indeed, a cursory look at the contents of any classical or modern textbook on the subject matter would suffice to argue in favor of our claim.
12#
發(fā)表于 2025-3-23 15:16:53 | 只看該作者
13#
發(fā)表于 2025-3-23 21:33:19 | 只看該作者
Notations and Terminologies,The notations and terminologies to be used throughout this monograph are mentioned in this chapter.
14#
發(fā)表于 2025-3-24 00:12:14 | 只看該作者
15#
發(fā)表于 2025-3-24 02:25:05 | 只看該作者
Operator Norm Attainment,Linear operators lie at the very heart of functional analysis and operator theory. As mentioned in the Preface, this monograph aims at exploring the beautiful interrelation between analysis, algebra, and geometry in the space of bounded linear operators between Banach spaces.
16#
發(fā)表于 2025-3-24 07:58:39 | 只看該作者
17#
發(fā)表于 2025-3-24 13:12:29 | 只看該作者
Extreme Contractions,Extremal structure of the unit ball of an operator space is certainly an important topic in the geometry of bounded linear operators.
18#
發(fā)表于 2025-3-24 18:00:22 | 只看該作者
Birkhoff–James Orthogonality and Geometry of Operator Spaces978-981-99-7111-4Series ISSN 2363-6149 Series E-ISSN 2363-6157
19#
發(fā)表于 2025-3-24 20:55:26 | 只看該作者
https://doi.org/10.1007/978-3-663-12214-2. Therefore, understanding B–J orthogonality of operators is of paramount importance to us. In this chapter, we gradually build the theory of characterizing B–J orthogonality of operators between Banach (Hilbert) spaces, up?to its fullest generality.
20#
發(fā)表于 2025-3-25 00:23:41 | 只看該作者
Der Taylorsche Satz und Potenzreihen, Indeed, one of the fundamental differences between the usual orthogonality in Hilbert spaces and B-J orthogonality in Banach spaces is that unlike the former one, the later one is, in general, asymmetric.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 12:49
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
冕宁县| 西乡县| 阿拉善左旗| 柏乡县| 张家口市| 汝南县| 黄陵县| 宿松县| 嵊泗县| 承德市| 来凤县| 和政县| 新邵县| 刚察县| 锡林郭勒盟| 西吉县| 安庆市| 墨竹工卡县| 麻江县| 家居| 洱源县| 关岭| 延庆县| 开原市| 德阳市| 定日县| 读书| 萨迦县| 阳朔县| 泾源县| 改则县| 呼图壁县| 牙克石市| 武义县| 漳平市| 巨野县| 周宁县| 富锦市| 福建省| 宝清县| 平定县|