找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Birational Geometry of Hypersurfaces; Gargnano del Garda, Andreas Hochenegger,Manfred Lehn,Paolo Stellari Book 2019 Springer Nature Switze

[復(fù)制鏈接]
樓主: magnify
11#
發(fā)表于 2025-3-23 13:38:20 | 只看該作者
Echte Erziehung aus Frankreich,and unirationality, R-equivalence on rational points, Chow groups of zero-cycles, Galois action on the Picard group, Brauer group, higher unramified cohomology, global differentials, specialisation method (via R-equivalence), geometrically rational surfaces, cubic hypersurfaces.
12#
發(fā)表于 2025-3-23 13:51:10 | 只看該作者
https://doi.org/10.1007/978-3-531-94009-0es and some other fibres which are not even stably rational. This used the specialisation method of Voisin, as extended by Pirutka and myself. Under specific circumstances, a simplified version of the specialisation method was produced by Schreieder, leading to a simpler proof of the HPT example. I
13#
發(fā)表于 2025-3-23 18:50:47 | 只看該作者
14#
發(fā)表于 2025-3-23 23:37:17 | 只看該作者
https://doi.org/10.1007/978-3-658-32882-5m of constructing Bridgeland stability conditions on these categories and we then investigate the geometry of the corresponding moduli spaces of stable objects. We discuss a number of consequences related to cubic fourfolds including new proofs of the Torelli theorem and of the integral Hodge conjec
15#
發(fā)表于 2025-3-24 02:21:08 | 只看該作者
16#
發(fā)表于 2025-3-24 08:47:30 | 只看該作者
17#
發(fā)表于 2025-3-24 13:00:09 | 只看該作者
18#
發(fā)表于 2025-3-24 15:20:50 | 只看該作者
19#
發(fā)表于 2025-3-24 20:52:18 | 只看該作者
20#
發(fā)表于 2025-3-25 02:12:36 | 只看該作者
,Durchführung der Befragung der Mentoren,ge structures that come naturally associated with a cubic fourfold. The emphasis is on the Hodge and lattice theoretic aspects with many technical details worked out explicitly. More geometric or derived results are only hinted at.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 20:12
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
三亚市| 五大连池市| 北碚区| 德保县| 定西市| 介休市| 高邑县| 夏津县| 蓬溪县| 桦川县| 同江市| 秦皇岛市| 伊宁县| 大冶市| 尼勒克县| 长武县| 古田县| 莎车县| 通州市| 普陀区| 洪雅县| 巴彦淖尔市| 永定县| 西乌| 隆回县| 珲春市| 象山县| 凌海市| 贞丰县| 黄山市| 章丘市| 叶城县| 乌拉特中旗| 临邑县| 社旗县| 达尔| 阿坝县| 昌都县| 大足县| 深水埗区| 额济纳旗|