找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Birational Geometry and Moduli Spaces; Elisabetta Colombo,Barbara Fantechi,Rita Pardini Book 2020 Springer Nature Switzerland AG 2020 Modu

[復制鏈接]
樓主: JAR
11#
發(fā)表于 2025-3-23 13:35:40 | 只看該作者
Programmieren von MikrocomputernIn this paper we show that the Chern numbers of a smooth Mori fibre space in dimension three are bounded in terms of the underlying topological manifold. We also generalise a theorem of Cascini and the second named author on the boundedness of Chern numbers of certain threefolds to the case of negative Kodaira dimension.
12#
發(fā)表于 2025-3-23 15:50:18 | 只看該作者
,Negative Rational Curves and Their Deformations on Hyperk?hler Manifolds,We survey some results about rational curves on hyperk?hler manifolds, explaining how to prove a certain deformation-invariance statement for loci covered by rational curves with negative Beauville–Bogomolov square.
13#
發(fā)表于 2025-3-23 21:37:42 | 只看該作者
A Travel Guide to the Canonical Bundle Formula,We survey known results on the canonical bundle formula and its applications in algebraic geometry.
14#
發(fā)表于 2025-3-23 22:35:08 | 只看該作者
,Some Examples of Calabi–Yau Pairs with Maximal Intersection and No Toric Model,It is known that a maximal intersection log canonical Calabi–Yau surface pair is crepant birational to a toric pair. This does not hold in higher dimension: this article presents some examples of maximal intersection Calabi–Yau pairs that admit no toric model.
15#
發(fā)表于 2025-3-24 03:16:01 | 只看該作者
What is the Monodromy Property for Degenerations of Calabi-Yau Varieties?,In this survey, we discuss the state of art about the monodromy property for Calabi-Yau varieties. We explain what is the monodromy property for Calabi-Yau varieties and then discuss some examples of Calabi-Yau varieties that satisfy this property. After this recap, we discuss a possible approach to future research in this area.
16#
發(fā)表于 2025-3-24 10:30:45 | 只看該作者
17#
發(fā)表于 2025-3-24 13:41:14 | 只看該作者
18#
發(fā)表于 2025-3-24 17:48:56 | 只看該作者
Birational Geometry and Moduli Spaces978-3-030-37114-2Series ISSN 2281-518X Series E-ISSN 2281-5198
19#
發(fā)表于 2025-3-24 22:13:15 | 只看該作者
Schnittpunktsatz, statisches Moment,bic threefolds, as described by Allcock, Carlson and Toledo, and the moduli space of fourfolds of .3.-type with a special non-symplectic automorphism of order three; then, I will show some consequences of this isomorphism concerning degenerations of non-symplectic automorphisms. Finally we will expl
20#
發(fā)表于 2025-3-25 01:51:20 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 20:27
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
镇平县| 六枝特区| 高雄县| 七台河市| 沐川县| 修文县| 永春县| 赤城县| 文山县| 荆门市| 陵川县| 武宣县| 农安县| 册亨县| 辽宁省| 贵阳市| 黄骅市| 团风县| 沂源县| 江安县| 青龙| 天镇县| 宁津县| 六枝特区| 麻阳| 顺平县| 江山市| 嘉鱼县| 沙坪坝区| 新绛县| 仙游县| 乐安县| 广东省| 景洪市| 简阳市| 新化县| 简阳市| 石首市| 隆昌县| 自治县| 民丰县|