找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Biometric Recognition; 13th Chinese Confere Jie Zhou,Yunhong Wang,Zhenhua Guo Conference proceedings 2018 Springer Nature Switzerland AG 20

[復(fù)制鏈接]
樓主: bile-acids
31#
發(fā)表于 2025-3-26 21:21:22 | 只看該作者
Anna Solin,Hanna-Mari Pienim?kiection method. Finally, the feature is encoded by Fisher vector and input to the linear SVM classifier to complete the action recognition. In the public dataset MSR Action3D and the dataset collected in this paper, the experiments show that the proposed method achieves a good recognition effect.
32#
發(fā)表于 2025-3-27 03:46:02 | 只看該作者
Minority Language Policy in Chinam different cameras to be processed in parallel so different equipment at different locations can be coordinated to work together thus greatly improve the efficiency for searching and tracing subject persons. The system is adopted by policing department and has showed outstanding robustness and effectiveness.
33#
發(fā)表于 2025-3-27 09:15:05 | 只看該作者
https://doi.org/10.1007/1-4020-8039-5ature tensors and implement classification recognition. We collected data from 93 subjects of different age groups, and each subjects was collected 10 sets of pressure data. The experiment results turn out that our LSTM network can get high classification accuracy and performs better than CNN model and many traditional methods.
34#
發(fā)表于 2025-3-27 12:43:18 | 只看該作者
Language Education and Globalization PolyU FKP database show that compared with traditional feature extraction method, the proposed method can not only extract more discriminative features, but also improve the accuracy of FKP recognition.
35#
發(fā)表于 2025-3-27 17:09:41 | 只看該作者
36#
發(fā)表于 2025-3-27 21:49:19 | 只看該作者
https://doi.org/10.1007/978-3-030-63904-4 eigenvectors are classified by RBF network. Experiments have been conducted in the CASIA-B database to prove the validity of the proposed method. Experiment results shows that our method performs better than the state-of-the-art multi-view methods.
37#
發(fā)表于 2025-3-27 23:26:15 | 只看該作者
38#
發(fā)表于 2025-3-28 02:11:00 | 只看該作者
39#
發(fā)表于 2025-3-28 08:13:07 | 只看該作者
Finger Vein Recognition Based on Weighted Graph Structural Feature Encoding method is developed for vein network feature representation. Experimental results show that the proposed approach achieves better performance than the state-of-the-art approaches on finger-vein recognition.
40#
發(fā)表于 2025-3-28 13:05:08 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 00:55
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
西安市| 泸水县| 靖西县| 青浦区| 嵩明县| 顺义区| 崇义县| 乌拉特前旗| 漳平市| 汾阳市| 夏邑县| 淮滨县| 华容县| 鹿泉市| 漯河市| 水富县| 石家庄市| 青铜峡市| 卢湾区| 大悟县| 克拉玛依市| 浦城县| 合山市| 麻栗坡县| 鄯善县| 临江市| 东平县| 伊宁市| 大洼县| 连云港市| 大竹县| 天全县| 新丰县| 梧州市| 蕉岭县| 上林县| 九龙坡区| 垫江县| 邛崃市| 阳江市| 东方市|