找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Biometric Recognition; 10th Chinese Confere Jinfeng Yang,Jucheng Yang,Jianjiang Feng Conference proceedings 2015 Springer International Pub

[復(fù)制鏈接]
樓主: Thoracic
51#
發(fā)表于 2025-3-30 10:46:26 | 只看該作者
Theoretical Framework of the Study,racting simplified SIFT features, we finely localizes 49 inner points and 17 outline points. Experiments on CAS-PEAL-R1 and FERET database show that our approach is accurate and robust. The proposed method achieves 99.23% localization accuracy of eyes on CAS-PEAL-R1.
52#
發(fā)表于 2025-3-30 13:45:12 | 只看該作者
53#
發(fā)表于 2025-3-30 19:38:47 | 只看該作者
54#
發(fā)表于 2025-3-30 21:37:09 | 只看該作者
Language Corpora Annotation and Processingalgorithm. The proposed face recognition method is evaluated on CASIA 3D face database. And the experimental results show our approach has superior performance than many existing methods for 3D face recognition and handles pose variations quite well.
55#
發(fā)表于 2025-3-31 01:12:39 | 只看該作者
Theoretical Framework of the Study,ator. Finally, SVM is used to classify frontal and non frontal faces. Experimental results show that the proposed method has good classification capability for face images with varying pose. It contribute to eliminate the impact of pose variation in dynamic face recognition system.
56#
發(fā)表于 2025-3-31 08:39:44 | 只看該作者
57#
發(fā)表于 2025-3-31 12:47:15 | 只看該作者
https://doi.org/10.1007/978-981-10-7239-0ilar Subspace (LCRC_SS), which changes the projective space from global space to local similarity subspace. The main advantages lie in LCRC_SS are making full use of “similar” resources and discarding the redundant “dissimilar” images in CR. Extensive experiments show that LCRC_SS has better recognition rate than CRC.
58#
發(fā)表于 2025-3-31 15:42:37 | 只看該作者
59#
發(fā)表于 2025-3-31 19:36:01 | 只看該作者
60#
發(fā)表于 2025-3-31 23:46:20 | 只看該作者
Birna Arnbj?rnsdóttir,Hafdís Ingvarsdóttirur new SYSU-MFSD database demonstrate that the descriptor can achieve a better liveness detection performance in both intra and cross-databases compared to the state-of-the-art techniques based on descriptors.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 11:31
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
班玛县| 泰顺县| 台北县| 澄迈县| 蓬莱市| 当雄县| 西青区| 永安市| 台中市| 茂名市| 富裕县| 连南| 北海市| 商都县| 子洲县| 成武县| 灵川县| 乌拉特前旗| 怀远县| 蓬溪县| 微山县| 金昌市| 婺源县| 张掖市| 商河县| 普宁市| 库车县| 龙江县| 江都市| 剑阁县| 桃江县| 申扎县| 临西县| 上高县| 武定县| 娄烦县| 莱芜市| 正安县| 开江县| 巧家县| 大关县|