找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Biomedical Image Registration; 6th International Wo Sébastien Ourselin,Marc Modat Conference proceedings 2014 Springer International Publis

[復制鏈接]
樓主: polysomnography
11#
發(fā)表于 2025-3-23 09:44:11 | 只看該作者
Non-rigid Groupwise Image Registration for Motion Compensation in Quantitative MRIm, black-blood variable flip-angle .. mapping in the carotid artery region, and apparent diffusion coefficient (ADC) mapping in the abdomen. The method was compared to a conventional pairwise alignment that uses a mutual information similarity measure. Registration accuracy was evaluated by computin
12#
發(fā)表于 2025-3-23 17:31:21 | 只看該作者
13#
發(fā)表于 2025-3-23 20:49:03 | 只看該作者
https://doi.org/10.1057/9780230508439 a public dataset (CUMC12). Our proposed approach achieves a similar level of accuracy as other state-of-the-art methods but with processing times as short as 1.5 minutes. We also demonstrate preliminary qualitative results in the time-sensitive registration contexts of registering MR brain volumes
14#
發(fā)表于 2025-3-24 00:57:52 | 只看該作者
15#
發(fā)表于 2025-3-24 03:12:18 | 只看該作者
Anuradha Sood,Tarun Sharma,Aradhna Sharmaggregation and a decomposition of similarity and regularisation term into two convex optimisation steps. This approach enables non-parametric registration with billions of degrees of freedom with computation times of less than a minute. We apply our method to two different common medical image regis
16#
發(fā)表于 2025-3-24 07:29:26 | 只看該作者
17#
發(fā)表于 2025-3-24 11:20:46 | 只看該作者
18#
發(fā)表于 2025-3-24 16:10:52 | 只看該作者
https://doi.org/10.1007/978-3-030-60262-8ethods was evaluated on two publicly available image datasets, one of cerebral angiograms and the other of a spine cadaver, using standardized evaluation methodology. Results showed that the proposed method outperformed the current state-of-the-art methods and achieved registration accuracy of 0.5 m
19#
發(fā)表于 2025-3-24 20:25:12 | 只看該作者
20#
發(fā)表于 2025-3-25 00:33:59 | 只看該作者
,In and Out of Cabinet, 1964–2002,n initialization and rely on the robustness of machine learning to the outliers and label updates via pyramidal deformable registration to gain better learning and predictions. In this sense, the proposed methodology has potential to be adapted in other learning problems as the manual labelling is u
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-17 08:18
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
加查县| 隆化县| 光山县| 绩溪县| 古田县| 漳平市| 定襄县| 普宁市| 平顺县| 时尚| 米易县| 阜新市| 永川市| 巴东县| 镇安县| 高碑店市| 施甸县| 新绛县| 巫山县| 拉孜县| 沙雅县| 丰县| 三明市| 高州市| 横山县| 探索| 江达县| 丘北县| 永德县| 乌鲁木齐市| 石狮市| 南岸区| 南丰县| 东莞市| 静宁县| 沧州市| 丽江市| 淅川县| 永修县| 赣州市| 夏津县|