找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Biomechanical Modelling at the Molecular, Cellular and Tissue Levels; Gerhard A. Holzapfel,Ray W. Ogden Book 2009 CISM Udine 2009 biomecha

[復(fù)制鏈接]
樓主: 密度
11#
發(fā)表于 2025-3-23 09:52:01 | 只看該作者
Need for a Continuum Biochemomechanical Theory of Soft Tissue and Cellular Growth and Remodeling,onse to continually changing hemodynamic and metabolic conditions’. I submit that mathematical models can help us to understand better the complex adaptations (and maladaptations) manifested by vascular tissues and cells, for such models can build intuition via simulations that contrast the effects
12#
發(fā)表于 2025-3-23 16:35:44 | 只看該作者
Multi-scale Modelling of the Heart,hich access systems of ODEs representing the cellular processes underlying the cardiac action potential. Navier-Stokes equations are solved for coronary blood flow in a system of branching blood vessels embedded in the deforming myocardium and the delivery of oxygen and metabolites is coupled to the
13#
發(fā)表于 2025-3-23 21:28:55 | 只看該作者
14#
發(fā)表于 2025-3-24 01:40:30 | 只看該作者
Kooperation und Kompetition im Videospielechanical environment, and that there is a pressing need for mathematical models to integrate information from the rapidly expanding data bases on such adaptations. Although both the biological motivation and the theoretical framework presented herein apply generally to soft tissues and cells, ideas
15#
發(fā)表于 2025-3-24 04:39:22 | 只看該作者
16#
發(fā)表于 2025-3-24 09:45:11 | 只看該作者
Kooperation und Kompetition im Videospielchanical properties of soft biological tissue can be analyzed by comparing theory with experimental data. Of particular concern will be the elastic properties of arterial wall tissue. The results of mechanical testing are important for the characterization of the material properties through appropri
17#
發(fā)表于 2025-3-24 14:42:42 | 只看該作者
18#
發(fā)表于 2025-3-24 15:16:11 | 只看該作者
https://doi.org/10.1007/978-3-211-95875-9biomechanical modeling; cellular growth; mechanics; modeling; simulation; tissue; tissue engineering
19#
發(fā)表于 2025-3-24 22:18:32 | 只看該作者
20#
發(fā)表于 2025-3-25 02:28:22 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 06:06
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
罗江县| 阿尔山市| 永寿县| 酒泉市| 昌平区| 兴国县| 顺昌县| 昆明市| 西乌珠穆沁旗| 塘沽区| 苍溪县| 屏东县| 鹤山市| 田东县| 河源市| 凤冈县| 喀喇沁旗| 清原| 安阳市| 临武县| 兰西县| 陵水| 梅河口市| 台北市| 松江区| 崇左市| 昭苏县| 云林县| 青冈县| 乐亭县| 政和县| 保康县| 弋阳县| 溆浦县| 蒙山县| 济源市| 南宁市| 封开县| 宁乡县| 平顶山市| 肥西县|