找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Bio-Inspired Computational Intelligence and Applications; International Confer Kang Li,Minrui Fei,Shiwei Ma Conference proceedings 2007 Spr

[復制鏈接]
樓主: 無法仿效
21#
發(fā)表于 2025-3-25 04:30:52 | 只看該作者
An Agent Reinforcement Learning Model Based on Neural Networksesigns the agent reinforcement learning based on neural networks. By the simulation experiment of agent’s bid price in Multi-Agent Electronic Commerce System, validated the Agent Reinforcement Learning Algorithm Based on Neural Networks has very good performance and the action impending ability.
22#
發(fā)表于 2025-3-25 07:32:49 | 只看該作者
23#
發(fā)表于 2025-3-25 11:38:42 | 只看該作者
Application of the Agamogenetic Algorithm to Solve the Traveling Salesman Problemamogenetic operator R-Edge and one mutation operator NI-Dot are given by introducing the conception of the relative distance between cities. The validity of the AGA to solve the traveling salesman problem is shown by simulative experiments.
24#
發(fā)表于 2025-3-25 18:57:46 | 只看該作者
25#
發(fā)表于 2025-3-25 22:40:22 | 只看該作者
26#
發(fā)表于 2025-3-26 00:26:37 | 只看該作者
https://doi.org/10.1007/978-3-642-45817-0or dynamic modification of the population’s dimensionality. A mathematical example was applied to evaluate this proposed approach. The experiment results suggested that this proposed approach is feasible, correct and valid.
27#
發(fā)表于 2025-3-26 06:23:34 | 只看該作者
A Novel Neural Network Based Reinforcement Learningthe validity of ART2-RL. As the complexity of the simulation increased, the result shows that the number of collision between robot and obstacles is effectively decreased; the novel neural network model provides significant improvement in the space measurement of reinforcement learning.
28#
發(fā)表于 2025-3-26 08:36:51 | 只看該作者
Parameter Identification of Bilinear System Based on Genetic Algorithm. Through a simulation study to an MIMO bilinear system, good results can still be got. In the last section, the paper describes that a hybrid GA, the combination of Genetic Algorithm and nonlinear Least Square, was developed to identify bilinear system structure and parameters simultaneously.
29#
發(fā)表于 2025-3-26 15:01:58 | 只看該作者
30#
發(fā)表于 2025-3-26 17:58:14 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-19 01:52
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
寿宁县| 五指山市| 临湘市| 汉川市| 临澧县| 泽普县| 昭平县| 班玛县| 镇坪县| 黔西县| 黄梅县| 庄河市| 驻马店市| 揭西县| 郑州市| 马公市| 宣武区| 封开县| 蓝山县| 临城县| 罗甸县| 阜宁县| 石台县| 收藏| 淄博市| 华池县| 福安市| 绥江县| 社会| 开化县| 冕宁县| 东宁县| 永兴县| 郓城县| 辰溪县| 义马市| 墨竹工卡县| 青河县| 淳安县| 恩平市| 玛沁县|