找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Bilinear Regression Analysis; An Introduction Dietrich von Rosen Book 2018 Springer International Publishing AG, part of Springer Nature 20

[復制鏈接]
樓主: 相似
21#
發(fā)表于 2025-3-25 06:58:50 | 只看該作者
22#
發(fā)表于 2025-3-25 07:43:12 | 只看該作者
23#
發(fā)表于 2025-3-25 12:44:00 | 只看該作者
https://doi.org/10.1007/978-981-13-3699-7 approach is extended to cover tensor space decompositions which is a basic tool when considering bilinear regression models. The decompositions are illustrated in figures where one can follow how maximum likelihood estimators are obtained by projecting on appropriate subspaces.
24#
發(fā)表于 2025-3-25 19:23:39 | 只看該作者
Issues Decisive for China’s Rise or Fallsitions of the tensor space where within-individuals spaces also have an inner product which has to be estimated. All obtained estimators have explicit forms. A short literature review of bilinear regression models is given.
25#
發(fā)表于 2025-3-25 22:09:18 | 只看該作者
Energy Security and Territorial Disputesrived for all estimators as well as the covariance among the estimators from the same model. Calculations use knowledge about the matrix normal, Wishart and inverted Wishart distributions. It is shown that the estimators are asymptotically equivalent to normally distributed random variables.
26#
發(fā)表于 2025-3-26 00:27:59 | 只看該作者
27#
發(fā)表于 2025-3-26 05:09:22 | 只看該作者
https://doi.org/10.1007/978-981-13-3699-7gression models several natural residuals appear. The residuals are obtained by applying space decompositions of the tensor product of the between-individual and within-individual spaces. Density approximations are performed for the residuals. To obtain the distribution of the large residuals a para
28#
發(fā)表于 2025-3-26 11:28:01 | 只看該作者
29#
發(fā)表于 2025-3-26 14:26:04 | 只看該作者
30#
發(fā)表于 2025-3-26 20:31:02 | 只看該作者
https://doi.org/10.1007/978-981-13-3699-7A short introduction to bilinear regression analysis is presented. The statistical paradigm is introduced. Moreover, bilinear regression models are presented together with a number of examples. Some historical remarks on the material of the book are given.
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-18 05:27
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
湘潭市| 临城县| 东山县| 平塘县| 迁安市| 陵川县| 兰州市| 迁西县| 安宁市| 买车| 新晃| 斗六市| 垣曲县| 夏河县| 昭苏县| 荥经县| 双流县| 中江县| 光泽县| 汤原县| 尉犁县| 石渠县| 新化县| 友谊县| 汾西县| 弥渡县| 南宫市| 双流县| 容城县| 宜州市| 屯门区| 调兵山市| 莱芜市| 乌兰察布市| 廊坊市| 若羌县| 宿松县| 太白县| 保定市| 阿巴嘎旗| 宾川县|