找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Bilinear Regression Analysis; An Introduction Dietrich von Rosen Book 2018 Springer International Publishing AG, part of Springer Nature 20

[復(fù)制鏈接]
樓主: 相似
21#
發(fā)表于 2025-3-25 06:58:50 | 只看該作者
22#
發(fā)表于 2025-3-25 07:43:12 | 只看該作者
23#
發(fā)表于 2025-3-25 12:44:00 | 只看該作者
https://doi.org/10.1007/978-981-13-3699-7 approach is extended to cover tensor space decompositions which is a basic tool when considering bilinear regression models. The decompositions are illustrated in figures where one can follow how maximum likelihood estimators are obtained by projecting on appropriate subspaces.
24#
發(fā)表于 2025-3-25 19:23:39 | 只看該作者
Issues Decisive for China’s Rise or Fallsitions of the tensor space where within-individuals spaces also have an inner product which has to be estimated. All obtained estimators have explicit forms. A short literature review of bilinear regression models is given.
25#
發(fā)表于 2025-3-25 22:09:18 | 只看該作者
Energy Security and Territorial Disputesrived for all estimators as well as the covariance among the estimators from the same model. Calculations use knowledge about the matrix normal, Wishart and inverted Wishart distributions. It is shown that the estimators are asymptotically equivalent to normally distributed random variables.
26#
發(fā)表于 2025-3-26 00:27:59 | 只看該作者
27#
發(fā)表于 2025-3-26 05:09:22 | 只看該作者
https://doi.org/10.1007/978-981-13-3699-7gression models several natural residuals appear. The residuals are obtained by applying space decompositions of the tensor product of the between-individual and within-individual spaces. Density approximations are performed for the residuals. To obtain the distribution of the large residuals a para
28#
發(fā)表于 2025-3-26 11:28:01 | 只看該作者
29#
發(fā)表于 2025-3-26 14:26:04 | 只看該作者
30#
發(fā)表于 2025-3-26 20:31:02 | 只看該作者
https://doi.org/10.1007/978-981-13-3699-7A short introduction to bilinear regression analysis is presented. The statistical paradigm is introduced. Moreover, bilinear regression models are presented together with a number of examples. Some historical remarks on the material of the book are given.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-18 22:51
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
大竹县| 将乐县| 武清区| 清水县| 南安市| 绥化市| 唐海县| 资兴市| 阿勒泰市| 武功县| 陈巴尔虎旗| 成武县| 黔西| 翼城县| 富阳市| 驻马店市| 唐河县| 兴文县| 大英县| 嘉峪关市| 金湖县| 楚雄市| 威宁| 竹溪县| 株洲市| 永福县| 体育| 肇东市| 正安县| 瓮安县| 老河口市| 新干县| 永新县| 大庆市| 景宁| 澄城县| 巨鹿县| 嘉峪关市| 宝鸡市| 云浮市| 宝应县|