找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Bilinear Forms and Zonal Polynomials; A. M. Mathai,Serge B. Provost,Takesi Hayakawa Book 1995 Springer-Verlag New York, Inc. 1995 Likeliho

[復制鏈接]
樓主: 聲音會爆炸
11#
發(fā)表于 2025-3-23 10:09:43 | 只看該作者
12#
發(fā)表于 2025-3-23 17:18:08 | 只看該作者
Lecture Notes in Statisticshttp://image.papertrans.cn/b/image/186233.jpg
13#
發(fā)表于 2025-3-23 21:37:27 | 只看該作者
14#
發(fā)表于 2025-3-24 01:38:54 | 只看該作者
Book 1995neralized quadratic and bilinear forms. The book is mostly self-contained. It starts from basic principles and brings the readers to the current research level in these areas. It is developed with detailed proofs and illustrative examples for easy readability and self-study. Several exercises are pr
15#
發(fā)表于 2025-3-24 06:14:56 | 只看該作者
16#
發(fā)表于 2025-3-24 10:01:59 | 只看該作者
https://doi.org/10.1007/978-3-319-59327-2 functions, Laguerre polynomials, Hermite polynomials and .-polynomials, and gives generating functions of these which are used for the derivation of the probability density function of a generalized quadratic form.
17#
發(fā)表于 2025-3-24 13:32:51 | 只看該作者
Quadratic and Bilinear Forms In Normal Vectors,inear forms. In these cases specific techniques are to be developed for dealing with bilinear forms. This will be seen from the discussions later on in this chapter. The material in this as well as in the remaining chapters will complement that in Mathai and Provost (1992).
18#
發(fā)表于 2025-3-24 16:42:25 | 只看該作者
Zonal Polynomials, functions, Laguerre polynomials, Hermite polynomials and .-polynomials, and gives generating functions of these which are used for the derivation of the probability density function of a generalized quadratic form.
19#
發(fā)表于 2025-3-24 18:59:47 | 只看該作者
20#
發(fā)表于 2025-3-25 00:38:00 | 只看該作者
Quadratic and Bilinear Forms in Elliptically Contoured Distributions,
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-13 08:05
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
绩溪县| 浦东新区| 玉林市| 汨罗市| 富源县| 介休市| 闽清县| 察雅县| 招远市| 曲阜市| 亳州市| 石家庄市| 中牟县| 金秀| 乐安县| 许昌市| 荣昌县| 温宿县| 故城县| 册亨县| 定日县| 江门市| 探索| 阿勒泰市| 武功县| 余干县| 金秀| 赤峰市| 扶绥县| 贡山| 钟山县| 额敏县| 禄劝| 海阳市| 三穗县| 绥江县| 昭通市| 彩票| 东兰县| 濮阳市| 大丰市|