找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Big and Complex Data Analysis; Methodologies and Ap S. Ejaz Ahmed Book 2017 Springer International Publishing AG 2017 big data analysis.com

[復(fù)制鏈接]
樓主: Diverticulum
41#
發(fā)表于 2025-3-28 16:01:07 | 只看該作者
42#
發(fā)表于 2025-3-28 21:32:41 | 只看該作者
Nonparametric Testing for Heterogeneous Correlationr a subpopulation. Two different testing procedures are compared. Both are based on the rankings of the values of two variables from a data set with a large number . of observations. The first maintains its level against Gaussian copulas; the second adapts to general alternatives in the sense that t
43#
發(fā)表于 2025-3-29 01:01:53 | 只看該作者
Optimal Shrinkage Estimation in Heteroscedastic Hierarchical Linear Modelstion in the presence of linear predictors. We formulate two heteroscedastic hierarchical regression models and study optimal shrinkage estimators in each model. A class of shrinkage estimators, both parametric and semiparametric, based on unbiased risk estimate (URE) is proposed and is shown to be (
44#
發(fā)表于 2025-3-29 03:05:07 | 只看該作者
45#
發(fā)表于 2025-3-29 10:05:15 | 只看該作者
High-Dimensional Classification for Brain Decodingctivity. In this setting the cognitive state is typically characterized by an element of a finite set, and the neuroimaging data comprise voluminous amounts of spatiotemporal data measuring some aspect of the neural signal. The associated statistical problem is one of the classifications from high-d
46#
發(fā)表于 2025-3-29 11:41:21 | 只看該作者
47#
發(fā)表于 2025-3-29 17:44:50 | 只看該作者
Book 2017 high-dimensional data analysis. More concretely, its goals are to: 1) highlight and expand the breadth of existing methods in big data and high-dimensional data analysis and their potential for the advancement of both the mathematical and statistical sciences; 2) identify important directions for f
48#
發(fā)表于 2025-3-29 22:38:53 | 只看該作者
49#
發(fā)表于 2025-3-30 00:51:54 | 只看該作者
50#
發(fā)表于 2025-3-30 06:05:01 | 只看該作者
How Different Are Estimated Genetic Networks of Cancer Subtypes?a simple permutation test for comparing estimated networks. The results provide new insight into properties of estimated networks using different reconstruction methods, as well as differences in estimated networks in different biological conditions.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 16:55
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
修水县| 闽清县| 那坡县| 汝南县| 建湖县| 靖西县| 昔阳县| 六盘水市| 怀化市| 乌审旗| 黄龙县| 三明市| 湟源县| 沾化县| 文水县| 焦作市| 蒙城县| 扶绥县| 哈巴河县| 进贤县| 泸定县| 永和县| 清远市| 涿州市| 枞阳县| 河池市| 扶余县| 汝阳县| 玉林市| 天镇县| 辉南县| 沂源县| 舟曲县| 安西县| 洛阳市| 麟游县| 沁阳市| 岫岩| 芜湖县| 全南县| 神农架林区|