找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Big Data and Social Computing; 7th China National C Xiaofeng Meng,Qi Xuan,Zi-Ke Zhang Conference proceedings 2022 The Editor(s) (if applica

[復制鏈接]
樓主: Odious
11#
發(fā)表于 2025-3-23 10:34:30 | 只看該作者
Identifying Spammers by?Completing the?Ratings of?Low-Degree Usersby these spammers do not match the quality of items, confusing the boundaries of good and bad items and seriously endangering the real interests of merchants and normal users. To eliminate the malicious influence caused by these spammers, many effective spamming detection algorithms are proposed in
12#
發(fā)表于 2025-3-23 15:18:12 | 只看該作者
Predicting Upvotes and?Downvotes in?Location-Based Social Networks Using Machine Learningswers or posts, most OSNs design “upvote” or “l(fā)ike” buttons, and some of them provide “downvote” or “dislike” buttons as well. While there are some existing works making predictions related to upvote, downvote prediction has never been systematically explored in OSNs before. However, downvote is jus
13#
發(fā)表于 2025-3-23 20:28:17 | 只看該作者
How Does Participation Experience in Collective Behavior Contribute to Participation Willingness: A participate. Based on a survey of migrant workers from Shenzhen in China, this study constructs a mediated moderating model, focusing on the moderating role of social networks in the relationship and the mediating role of institutional support. The results show that collective behavior participatio
14#
發(fā)表于 2025-3-23 22:42:39 | 只看該作者
15#
發(fā)表于 2025-3-24 03:10:58 | 只看該作者
16#
發(fā)表于 2025-3-24 07:33:50 | 只看該作者
17#
發(fā)表于 2025-3-24 12:45:57 | 只看該作者
18#
發(fā)表于 2025-3-24 15:07:36 | 只看該作者
Research on?Network Invulnerability and?Its Application on?AS-Level Internet Topologyi-attributes. Finally, we conduct vulnerability analysis experiments on five real datasets to verify the validity of our method. Specially, we apply the method to autonomous systems (AS) Internet networks for different countries, which is of great significance to developing network security.
19#
發(fā)表于 2025-3-24 22:31:26 | 只看該作者
FedDFA: Dual-Factor Aggregation for?Federated Driver Distraction Detectionis, FedDFA is introduced, which calculates the aggregation weights based on the number of images and that of drivers on each client for better parameter aggregation during federated learning. Extensive experiments are conducted and experimental results show that FedDFA achieves satisfactory performance.
20#
發(fā)表于 2025-3-25 02:35:26 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-6 04:33
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
鄯善县| 锡林浩特市| 卓尼县| 丽江市| 大埔县| 聂拉木县| 黎平县| 图片| 茶陵县| 梅州市| 卢龙县| 汝州市| 杭州市| 安岳县| 建宁县| 江城| 罗甸县| 富裕县| 沙河市| 赤水市| 南丹县| 高碑店市| 稷山县| 亚东县| 缙云县| 应用必备| 彰化县| 南乐县| 九寨沟县| 丹阳市| 莫力| 册亨县| 安西县| 仙游县| 西盟| 保德县| 卢湾区| 湛江市| 麟游县| 万全县| 锡林浩特市|