找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Big Data and Artificial Intelligence; 11th International C Vikram Goyal,Naveen Kumar,Dhruv Kumar Conference proceedings 2023 The Editor(s)

[復(fù)制鏈接]
樓主: 游牧
41#
發(fā)表于 2025-3-28 17:24:05 | 只看該作者
42#
發(fā)表于 2025-3-28 20:06:18 | 只看該作者
KG-CTG: Citation Generation Through Knowledge Graph-Guided Large Language Modelsset of standard S2ORC dataset, which only consists of computer science academic research papers in the English Language. Vicuna performs best for this task with 14.15 Meteor, 12.88 Rouge-1, 1.52 Rouge-2, and 10.94 Rouge-L. Also, Alpaca performs best, and improves the performance by 36.98% in Rouge-1
43#
發(fā)表于 2025-3-28 23:49:41 | 只看該作者
SciPhyRAG - Retrieval Augmentation to?Improve LLMs on?Physics Q &Ae and . increase on ROUGE-2 scores. This approach has the potential to be used to reshape Physics Q &A by LLMs and has a lasting impact on their use for Physics education. Furthermore, the data sets released can be a reference point for future research and educational domain tasks such as . and ..
44#
發(fā)表于 2025-3-29 04:17:20 | 只看該作者
45#
發(fā)表于 2025-3-29 10:02:48 | 只看該作者
GEC-DCL: Grammatical Error Correction Model with?Dynamic Context Learning for?Paragraphs and Scholar we substantiate the efficacy of our approach, achieving substantial F. score enhancements: 77% increase, 19.61% boost, and 10.49% rise respectively, compared to state-of-the-art models. Furthermore, we contrast our model’s performance with LLaMA’s GEC capabilities. We extend our investigation to sc
46#
發(fā)表于 2025-3-29 12:02:37 | 只看該作者
A Deep Learning Emotion Classification Framework for?Low Resource Languageslassification model is selected through experimentation that compares machine learning models and pre-trained models. Machine learning and deep learning models are SVM, Logistic Regression, Random Forest, CNN, BiLSTM, and CNN+BiLSTM. The pre-trained models, mBERT, IndicBERT, and a hybrid model, mBER
47#
發(fā)表于 2025-3-29 17:32:05 | 只看該作者
48#
發(fā)表于 2025-3-29 21:31:51 | 只看該作者
49#
發(fā)表于 2025-3-30 01:30:45 | 只看該作者
50#
發(fā)表于 2025-3-30 04:32:45 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 08:59
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
曲沃县| 巴中市| 乐陵市| 信丰县| 原阳县| 通海县| 万盛区| 南充市| 开鲁县| 仙居县| 汽车| 临潭县| 贞丰县| 莒南县| 繁昌县| 依兰县| 昌邑市| 广安市| 神木县| 金川县| 夏津县| 方山县| 沙洋县| 霍山县| 大兴区| 虞城县| 崇义县| 临沂市| 社旗县| 石首市| 和平区| 获嘉县| 博爱县| 泊头市| 田阳县| 卓资县| 海南省| 景洪市| 兴城市| 清远市| 宁城县|