找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Big Data Analytics for Smart Transport and Healthcare Systems; Saeid Pourroostaei Ardakani,Ali Cheshmehzangi Book 2023 The Editor(s) (if a

[復(fù)制鏈接]
樓主: 法官所用
21#
發(fā)表于 2025-3-25 04:02:06 | 只看該作者
22#
發(fā)表于 2025-3-25 07:35:11 | 只看該作者
23#
發(fā)表于 2025-3-25 14:11:42 | 只看該作者
https://doi.org/10.1007/978-1-4302-2992-6ate data and analyze the changing climate trends in the same province. An artificial neural network is established as the model in this project to implement this objective. The performance shows that this model can complete this classification task.
24#
發(fā)表于 2025-3-25 17:28:41 | 只看該作者
WCF RIA Services and Silverlight for Mobilee experiment results indicate that self-organized map model with the TF-IDF extraction method can achieve the best clustering accuracy. Moreover, the optimized model can have great potential to handle large-scale data in real practice.
25#
發(fā)表于 2025-3-25 20:00:28 | 只看該作者
26#
發(fā)表于 2025-3-26 02:07:27 | 只看該作者
The Role of Big Data Analytics in Urban Systems: Review and Prospect for Smart Transport and Healthe current information age. The chapter starts with an overview of Big Data analytics for urban systems and follows the discussions from the sector-based perspectives.It then explores Big Data Applications (BDA) in two key areas of smart transportation and healthcare, particularly in cities and as pa
27#
發(fā)表于 2025-3-26 08:11:18 | 只看該作者
Big Data Analysis for?an?Optimised Classification for?Flight Status : Prediction Analysis Using Machtive impacts of such delays. Machine learning-enabled?Big data solutions have been widely utilized in recent studies to anticipate aircraft delays. They need a data pre-processing to understand and grasp the relevance of each data attribute. The results of data attribute relevance are used to filter
28#
發(fā)表于 2025-3-26 11:50:28 | 只看該作者
On-Board Unit Freight Transport Data Analysis and Prediction: Big Data Analysis for Data Pre-processontribute to society’s efficient production and development, particularly in optimising urban systems. This chapter aims to build a precise model to predict the number of freight vehicles?in future timestamps?based on historical data provided On-Board Unit (OBU)?datasets in Belgium’s?road networks.
29#
發(fā)表于 2025-3-26 14:36:12 | 只看該作者
Data-Driven Multi-target Prediction Analysis for Driving Pattern Recognition: A Machine Learning Appers, such as the car’s speed, traffic, weather, and road status. This article investigates the correlations between driving attributes and proposes a multi-target prediction model?to recognise driving patterns. For this, a pre-processing data approach, including Pearson’s Correlation Coefficient, Qu
30#
發(fā)表于 2025-3-26 17:02:22 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 14:52
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
邹城市| 交城县| 渭源县| 兴业县| 沧州市| 庆云县| 政和县| 高州市| 东源县| 松溪县| 青铜峡市| 昆明市| 长治市| 延庆县| 芜湖县| 彰化市| 隆回县| 石首市| 商都县| 长寿区| 长垣县| 富顺县| 汶上县| 洛阳市| 江达县| 抚远县| 攀枝花市| 唐海县| 河曲县| 维西| 高邮市| 昌都县| 甘肃省| 泽普县| 铜陵市| 惠东县| 康乐县| 建水县| 岚皋县| 萨嘎县| 孟连|