找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Big Data; 29th British Nationa Georg Gottlob,Giovanni Grasso,Christian Schallhart Conference proceedings 2013 Springer-Verlag Berlin Heidel

[復(fù)制鏈接]
樓主: DUBIT
21#
發(fā)表于 2025-3-25 05:20:44 | 只看該作者
22#
發(fā)表于 2025-3-25 11:26:09 | 只看該作者
23#
發(fā)表于 2025-3-25 13:06:54 | 只看該作者
24#
發(fā)表于 2025-3-25 16:04:45 | 只看該作者
25#
發(fā)表于 2025-3-25 21:01:21 | 只看該作者
https://doi.org/10.1007/978-3-642-39467-6Web information extraction; data management; network mining; parallel databases; semantic databases; data
26#
發(fā)表于 2025-3-26 02:04:09 | 只看該作者
978-3-642-39466-9Springer-Verlag Berlin Heidelberg 2013
27#
發(fā)表于 2025-3-26 06:55:06 | 只看該作者
Querying Big Social Datauery classes can be considered tractable in the context of big data? How can we make query answering feasible on big data? What should we do about the quality of the data, the other side of big data? This paper aims to provide an overview of recent advances in tackling these questions, using social network analysis as an example.
28#
發(fā)表于 2025-3-26 11:14:15 | 只看該作者
29#
發(fā)表于 2025-3-26 16:10:58 | 只看該作者
Ali Cavit,Haluk Ozcanli,A. Merter Ozencitudy, explain, and solve the technical challenges in big data, but we find no inspiration in the three Vs. Volume is surely nothing new for us, streaming databases have been extensively studied over a decade, while data integration and semistructured has studied heterogeneity from all possible angles.
30#
發(fā)表于 2025-3-26 20:09:45 | 只看該作者
Big Data Begets Big Database Theorytudy, explain, and solve the technical challenges in big data, but we find no inspiration in the three Vs. Volume is surely nothing new for us, streaming databases have been extensively studied over a decade, while data integration and semistructured has studied heterogeneity from all possible angles.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 10:03
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
安化县| 招远市| 惠安县| 澜沧| 衡水市| 霍邱县| 兰坪| 宁明县| 东安县| 衡山县| 虹口区| 崇仁县| 道真| 莒南县| 双牌县| 焉耆| 淮阳县| 余庆县| 陆川县| 房山区| 长乐市| 藁城市| 磴口县| 临邑县| 青阳县| 铅山县| 独山县| 齐齐哈尔市| 工布江达县| 香格里拉县| 怀安县| 固镇县| 宜都市| 阿合奇县| 龙南县| 金湖县| 随州市| 通州区| 乃东县| 宜兰市| 洮南市|