找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Big Data; 11th CCF Conference, Enhong Chen,Yang Gao,Wanqi Yang Conference proceedings 2023 The Editor(s) (if applicable) and The Author(s),

[復制鏈接]
樓主: 討論小組
41#
發(fā)表于 2025-3-28 16:09:55 | 只看該作者
https://doi.org/10.1057/9781137491121iew Graph Transformer module, and a multi-view attention module, which can explore the complementarity, consistency, and semantic relevance of multiple different views in online social networks. Experimental results show that MV-GT outperforms many existing methods and also demonstrates the effectiv
42#
發(fā)表于 2025-3-28 19:53:22 | 只看該作者
43#
發(fā)表于 2025-3-29 00:44:39 | 只看該作者
Female Genital Mutilation/-Cutting the relative temporal distance between power consumption data points and their neighbors. We validate the proposed model using the SGCC dataset, and our experimental results demonstrate high accuracy, precision, F1-score, and AUC values.
44#
發(fā)表于 2025-3-29 03:25:04 | 只看該作者
45#
發(fā)表于 2025-3-29 09:06:49 | 只看該作者
Sara K. Howe,Antonnet Renae Johnsonon their response sequences. KT is crucial for the effectiveness of computer-assisted intelligent educational systems, such as intelligent tutoring systems and educational resource recommendation systems. In recent years, KT models benefited from the deep learning approaches and improved dramaticall
46#
發(fā)表于 2025-3-29 11:33:00 | 只看該作者
Sara K. Howe,Antonnet Renae Johnsontiple individual models have demonstrated promising results for forecasting performance. However, these models also face the issues of high computational cost and time consumption when dealing with multiple time-series. To address these issues, this paper proposes a novel framework that integrates m
47#
發(fā)表于 2025-3-29 16:12:52 | 只看該作者
48#
發(fā)表于 2025-3-29 20:36:09 | 只看該作者
49#
發(fā)表于 2025-3-30 01:45:13 | 只看該作者
Sara K. Howe,Antonnet Renae Johnsonnly focus on extracting information from high-level features, while ignoring the influence of low-level features on FGVC. Based on this, this paper integrates low-level detailed information and high-level semantic information to improve the model performance by enhancing the feature representation a
50#
發(fā)表于 2025-3-30 05:49:01 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-7 14:25
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
筠连县| 凤城市| 轮台县| 大安市| 临朐县| 哈密市| 沐川县| 河南省| 宾阳县| 靖宇县| 临汾市| 稻城县| 全州县| 明溪县| 宁明县| 甘南县| 靖边县| 阳原县| 高要市| 新兴县| 五莲县| 宁南县| 苍梧县| 渑池县| 台北县| 溧水县| 视频| 长宁县| 水富县| 仁怀市| 江川县| 耒阳市| 库伦旗| 上思县| 沂水县| 定陶县| 祁阳县| 五峰| 阿鲁科尔沁旗| 柏乡县| 临高县|