找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Bifurcations and Periodic Orbits of Vector Fields; Dana Schlomiuk Book 1993 Springer Science+Business Media Dordrecht 1993 computer.comput

[復(fù)制鏈接]
樓主: 鳴叫大步走
41#
發(fā)表于 2025-3-28 15:40:37 | 只看該作者
Local Dynamics and Nonlocal Bifurcations,nonlinear Stokes phenomena, and so on. In the third chapter, a sketch of the proof of the finiteness theorem for limit cycles of a polynomial vector field in the plane is given. The last chapter is devoted to the smooth analogue of Hilbert’s problem, the so-called Hilbert-Arnold problem. It deals wi
42#
發(fā)表于 2025-3-28 19:51:57 | 只看該作者
,Singularités d’équations différentielles holomorphes en dimension deux,on . = 0 are the leaves of a holomorphic foliation .. of . {.}. In the seventies, R. Thom asked very interesting questions about these objects. They are now well understood. This work is mainly devoted to proving the following: . = 0 has a holomorphic first integral if and only .. has a finite numb
43#
發(fā)表于 2025-3-29 01:07:23 | 只看該作者
Techniques in the Theory of Local Bifurcations: Cyclicity and Desingularization,analytic unfolding is bounded, or more precisely, whether any limit periodic set has finite cyclicity. In these notes we introduce several techniques for attacking this question: asymptotic expansion of return maps, ideal of coefficients, desingularization of parametrized families. Moreover, because
44#
發(fā)表于 2025-3-29 03:06:31 | 只看該作者
Bifurcation Methods in Polynomial Systems, problem for quadratic vector fields by means of analytic methods and we discuss the progress made in that direction. In the second part we discuss the use of Abelian integrals to obtain limit cycles of polynomial systems. We first give an overview of known results with an idea of the methods involv
45#
發(fā)表于 2025-3-29 11:06:55 | 只看該作者
10樓
46#
發(fā)表于 2025-3-29 11:27:00 | 只看該作者
10樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 01:26
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
延川县| 灵武市| 甘洛县| 谢通门县| 长顺县| 普宁市| 旺苍县| 青岛市| 开鲁县| 斗六市| 大悟县| 平陆县| 宝鸡市| 新野县| 河北省| 桃源县| 平原县| 城步| 仪征市| 犍为县| 科技| 阜南县| 晋宁县| 龙泉市| 曲靖市| 习水县| 溧水县| 保靖县| 津南区| 宽城| 沽源县| 虹口区| 浮梁县| 黄平县| 石景山区| 宁安市| 普陀区| 黔东| 澜沧| 迭部县| 罗平县|