找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Bifurcation, Symmetry and Patterns; Jorge Buescu,Sofia B. S. D. Castro,Isabel Salgado Book 2003 Springer Basel AG 2003 Hot Spot.Mathemati

[復(fù)制鏈接]
樓主: hearing-aid
21#
發(fā)表于 2025-3-25 03:41:58 | 只看該作者
Patchwork Patterns: Dynamics on Unbounded Domains using a number of different topologies to examine the asymptotic behaviour of patterns. This highlights some problems that need to be understood in constructing a topological theory of dynamics for spatiotemporal patterns
22#
發(fā)表于 2025-3-25 07:52:39 | 只看該作者
23#
發(fā)表于 2025-3-25 14:12:55 | 只看該作者
24#
發(fā)表于 2025-3-25 17:42:57 | 只看該作者
Spatially Resonant Interactions in Annular Convectioninesq fluid. The stability of these convection patterns as well as the spatial interaction between them resulting in the formation of mixed modes are numerically investigated by considering the original nonlinear set of Navier-Stokes equations. A detailed picture of the nonlinear dynamics before tem
25#
發(fā)表于 2025-3-25 23:19:27 | 只看該作者
Hopf Bifurcations on Cubic Latticesattices. This is an equivariant bifurcation with spatial symmetry Γ = ..?.⊕?.. By extending the group to a larger, wreath product group we can use the method of . to find all solution branches guaranteed by group theory to be primary. This work is an extension of that done for the steady state FCC a
26#
發(fā)表于 2025-3-26 01:14:53 | 只看該作者
27#
發(fā)表于 2025-3-26 05:01:56 | 只看該作者
28#
發(fā)表于 2025-3-26 08:35:29 | 只看該作者
29#
發(fā)表于 2025-3-26 15:30:50 | 只看該作者
30#
發(fā)表于 2025-3-26 20:49:14 | 只看該作者
Rayleigh-Bénard Convection with Experimental Boundary Conditionslaw of cooling is formulated as a bifurcation problem. The Rayleigh number as usually defined is shown to be inappropriate as a bifurcation parameter since the temperature across the layer depends on the amplitude of convection and hence changes as convection evolves at fixed external parameter valu
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 12:36
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
衢州市| 泰宁县| 马尔康县| 宕昌县| 北宁市| 合作市| 西和县| 锦屏县| 湖州市| 江口县| 永泰县| 潮州市| 扶绥县| 新河县| 内乡县| 达孜县| 枞阳县| 攀枝花市| 沿河| 交口县| 扶沟县| 攀枝花市| 通化县| 福鼎市| 阿克| 高淳县| 固镇县| 蓬莱市| 饶平县| 青岛市| 资兴市| 连平县| 镇远县| 霍邱县| 夏津县| 三明市| 高尔夫| 会泽县| 资中县| 绥宁县| 罗平县|