找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Bifurcations of Planar Vector Fields and Hilbert‘s Sixteenth Problem; Robert Roussarie Book 1998 Springer Basel 1998 bifurcation diagrams.

[復(fù)制鏈接]
樓主: 投降
11#
發(fā)表于 2025-3-23 09:57:24 | 只看該作者
Treatment of Discogenic Back Pain 0-dimensional parameter space. We will present two fundamentals tools: the desingularization and the asymptotic expansion of the return map along a limit periodic set. In the particular case of an individual vector field these techniques give the desired final result: the desingularization theorem
12#
發(fā)表于 2025-3-23 17:21:15 | 只看該作者
13#
發(fā)表于 2025-3-23 18:57:08 | 只看該作者
14#
發(fā)表于 2025-3-24 01:19:42 | 只看該作者
15#
發(fā)表于 2025-3-24 04:21:54 | 只看該作者
16#
發(fā)表于 2025-3-24 09:06:33 | 只看該作者
Treatment of Discogenic Back Paine there is no accumulation of limit cycles in the phase space. In other words, the cyclicity of each limit periodic set is less than one and any analytic vector field on the sphere has only a finite number of limit cycles.
17#
發(fā)表于 2025-3-24 14:31:00 | 只看該作者
The 0-Parameter Case,e there is no accumulation of limit cycles in the phase space. In other words, the cyclicity of each limit periodic set is less than one and any analytic vector field on the sphere has only a finite number of limit cycles.
18#
發(fā)表于 2025-3-24 16:13:03 | 只看該作者
19#
發(fā)表于 2025-3-24 19:44:43 | 只看該作者
20#
發(fā)表于 2025-3-25 00:24:58 | 只看該作者
2197-1803 ical analytic geometric methods applied to regular limit per.In a coherent, exhaustive and progressive way, this book presents the tools for studying local bifurcations of limit cycles in families of planar vector fields. A systematic introduction is given to such methods as division of an analytic
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 05:21
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
巩留县| 含山县| 固镇县| 鄄城县| 淮南市| 玉屏| 通许县| 咸宁市| 巨野县| 张家港市| 招远市| 观塘区| 黄梅县| 镇康县| 玉门市| 通河县| 沾益县| 丽水市| 眉山市| 榆社县| 托克逊县| 三亚市| 凉城县| 长葛市| 柞水县| 文昌市| 铜梁县| 武山县| 阳曲县| 永丰县| 齐河县| 普洱| 曲阳县| 鄂托克前旗| 巴中市| 吐鲁番市| 岫岩| 天津市| 九龙城区| 满洲里市| 东台市|