找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Bifurcation and Chaos; Theory and Applicati Jan Awrejcewicz Book 1995 Springer-Verlag Berlin Heidelberg 1995 bifurcation.chaos.dynamics.non

[復(fù)制鏈接]
樓主: Clientele
11#
發(fā)表于 2025-3-23 11:01:04 | 只看該作者
12#
發(fā)表于 2025-3-23 16:50:48 | 只看該作者
,Versuchsanordnung und -durchführung,s. The generic bifurcations of the periodic solution are known as codimension one bifurcations: tangent bifurcation, period doubling bifurcation and the Hopf bifurcation. At the parameters for which bifurcation occurs, if a periodic solution satisfies two bifurcation conditions, then the bifurcation
13#
發(fā)表于 2025-3-23 18:44:46 | 只看該作者
Focused Issues in Family Therapyions. The computer analysis is carried out for the oscillations of two types of a Josephson element, one of which is a tunnel type and the other a bridge type. The Josephson circuits considered here are an rf-driven circuit, an autonomous oscillation circuit and a distributed parameter circuit. The
14#
發(fā)表于 2025-3-23 22:55:06 | 只看該作者
Somalia: Better Late than Never,amics, is discussed as a simple but prototypical model to describe bifurcation from regular to chaotic behaviour. It is considered: (i) to check the reliability and computational efficiency of numerical procedures for obtaining the system response and of quantitative measures for identifying chaos;
15#
發(fā)表于 2025-3-24 03:15:51 | 只看該作者
16#
發(fā)表于 2025-3-24 09:53:15 | 只看該作者
17#
發(fā)表于 2025-3-24 12:51:50 | 只看該作者
18#
發(fā)表于 2025-3-24 16:55:13 | 只看該作者
Problemstellung und Stand der Forschung,ical dynamical chaos are retained but, typically, on finite and different time scales only. The necessary reformulation of the ergodic and algorithmic theories, as parts of the general theory of dynamical systems, is discussed. A number of specific unsolved problems is listed.
19#
發(fā)表于 2025-3-24 21:14:35 | 只看該作者
20#
發(fā)表于 2025-3-25 00:13:12 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-17 04:37
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
永昌县| 汉沽区| 新乐市| 惠东县| 册亨县| 上饶市| 南丹县| 盖州市| 山西省| 元谋县| 无锡市| 平南县| 中阳县| 新津县| 吉林市| 通山县| 福泉市| 成安县| 威海市| 茂名市| 和静县| 惠州市| 衡东县| 崇礼县| 旌德县| 阿瓦提县| 沛县| 巴塘县| 宜兰市| 惠州市| 福贡县| 酉阳| 通化县| 宁安市| 昭平县| 班玛县| 武安市| 平遥县| 遂昌县| 华安县| 清丰县|