找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Bifurcation Dynamics of a Damped Parametric Pendulum; Yu Guo,Albert C. J. Luo Book 2020 Springer Nature Switzerland AG 2020

[復(fù)制鏈接]
樓主: 葉子
21#
發(fā)表于 2025-3-25 06:02:55 | 只看該作者
Diffus verteiltes interstellares Gas,“PD” represent the saddle-node and period-doubling bifurcations, respectively. The symmetric and asymmetric periodic motions are labeled by “S” and “A”, respectively. All bifurcations trees are predicted with varying excitation frequency Ω. Other parameters are chosen as
22#
發(fā)表于 2025-3-25 10:24:47 | 只看該作者
23#
發(fā)表于 2025-3-25 13:17:35 | 只看該作者
2573-3168 derstand the complex world...Even though the parametrically excited pendulum is one of the simplest nonlinear systems, until now, complex motions in such a parametric pendulum cannot be achieved. In this book, the bifurcation dynamics of periodic motions to chaos in a damped, parametrically excited
24#
發(fā)表于 2025-3-25 17:56:45 | 只看該作者
Book 2020he complex world...Even though the parametrically excited pendulum is one of the simplest nonlinear systems, until now, complex motions in such a parametric pendulum cannot be achieved. In this book, the bifurcation dynamics of periodic motions to chaos in a damped, parametrically excited pendulum i
25#
發(fā)表于 2025-3-25 23:19:02 | 只看該作者
Bifurcation Trees,“PD” represent the saddle-node and period-doubling bifurcations, respectively. The symmetric and asymmetric periodic motions are labeled by “S” and “A”, respectively. All bifurcations trees are predicted with varying excitation frequency Ω. Other parameters are chosen as
26#
發(fā)表于 2025-3-26 02:39:39 | 只看該作者
Harmonic Frequency-Amplitude Characteristics,od. for non-travelable periodic motions. For the travelable period-m motions, the harmonic analysis of periodic node velocities are presented. Because of . the periodic node displacements cannot be used for the harmonic analysis of the periodic motions.
27#
發(fā)表于 2025-3-26 06:58:58 | 只看該作者
28#
發(fā)表于 2025-3-26 09:28:51 | 只看該作者
29#
發(fā)表于 2025-3-26 15:28:01 | 只看該作者
Introduction,st nonlinear systems. This is because the inherent complex dynamics of the parametrically excited pendulum helps one better understand the complex world. However, until now, complex motions in the parametrical pendulum cannot be achieved yet through the traditional analysis. What are the mechanism a
30#
發(fā)表于 2025-3-26 16:52:53 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 01:57
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
陕西省| 泸溪县| 东阿县| 小金县| 巫溪县| 郯城县| 江北区| 石景山区| 剑川县| 洞头县| 滦南县| 资阳市| 桃园县| 保山市| 郓城县| 周口市| 天全县| 宁河县| 丰顺县| 思茅市| 林口县| 嘉祥县| 海晏县| 福建省| 大新县| 平南县| 宁明县| 汤原县| 武强县| 靖安县| 三亚市| 泗阳县| 巩义市| 鲜城| 方山县| 宁武县| 左云县| 南京市| 荥经县| 鞍山市| 安图县|