找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Bieberbach Groups and Flat Manifolds; Leonard S. Charlap Textbook 1986 Springer-Verlag New York Inc. 1986 Algebraic structure.Finite.Invar

[復(fù)制鏈接]
樓主: 哪能仁慈
11#
發(fā)表于 2025-3-23 09:44:53 | 只看該作者
https://doi.org/10.1007/978-94-007-7500-8n some wonderful results in riemannian geometry which, after a little initial work, come free with the algebraic results on Bieberbach groups. This procedure in which problems in one field, riemannian geometry, are converted to problems in another field, algebra, is very much in the spirit of modern
12#
發(fā)表于 2025-3-23 15:33:53 | 只看該作者
13#
發(fā)表于 2025-3-23 21:26:25 | 只看該作者
Interregionalism across the Atlantic SpaceWe start with an exercise (the first of many).
14#
發(fā)表于 2025-3-24 02:16:10 | 只看該作者
Barbara Zambelli,Stefano CiurliWe have defined Bieberbach subgroups of M. as the torsionfree, discrete, uniform ones. We have seen that such a subgroup . contains a free abelian subgroup . ? IR. which is normal, maximal abelian, and of finite index in .. We now define what it means for an abstract group to be Bieberbach.
15#
發(fā)表于 2025-3-24 03:49:41 | 只看該作者
James R. Smith,Olivia M. Pereira-SmithThis chapter, as its title indicates, concerns the group Aut(.) of automorphisms of a Bieberbach group .. A general reference is [20]. Much of this chapter is joint work with Han Sah and has never been published before.
16#
發(fā)表于 2025-3-24 09:22:09 | 只看該作者
17#
發(fā)表于 2025-3-24 10:59:57 | 只看該作者
18#
發(fā)表于 2025-3-24 15:58:36 | 只看該作者
Automorphisms,This chapter, as its title indicates, concerns the group Aut(.) of automorphisms of a Bieberbach group .. A general reference is [20]. Much of this chapter is joint work with Han Sah and has never been published before.
19#
發(fā)表于 2025-3-24 18:59:57 | 只看該作者
20#
發(fā)表于 2025-3-24 23:44:12 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 17:45
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
新竹市| 太白县| 庆元县| 无棣县| 河间市| 浦县| 纳雍县| 祁连县| 盖州市| 大宁县| 秭归县| 九台市| 巫溪县| 汤原县| 米易县| 海林市| 湘潭市| 广灵县| 监利县| 祁阳县| 奈曼旗| 炎陵县| 兰坪| 内江市| 门源| 鸡东县| 郓城县| 雷州市| 北流市| 公安县| 荆门市| 菏泽市| 祁门县| 宜春市| 淅川县| 瓮安县| 宁晋县| 乌海市| 满洲里市| 分宜县| 黑水县|