找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Biased Sampling, Over-identified Parameter Problems and Beyond; Jing Qin Book 2017 Springer Nature Singapore Pte Ltd. 2017 Biased Sampling

[復(fù)制鏈接]
樓主: 評估
51#
發(fā)表于 2025-3-30 09:23:24 | 只看該作者
Brief Review of Parametric Likelihood Inferences,Maximum likelihood estimation (MLE) under regular conditions can be found in most statistical books. In non-regular cases, however, it involves all kinds of problems, such as solution on the boundary of parameter space, multiple roots, non-existence, inconsistency in the presence of many incidental parameters, etc.
52#
發(fā)表于 2025-3-30 13:39:03 | 只看該作者
53#
發(fā)表于 2025-3-30 17:04:13 | 只看該作者
54#
發(fā)表于 2025-3-30 21:09:45 | 只看該作者
Empirical Likelihood with Applications,The maximum likelihood method for regular parametric models has many optimality properties. As a result, it is one of the most popular methods in statistical inference. However, model mis-specification is a big concern since a misspecified model may lead to bias results.
55#
發(fā)表于 2025-3-31 01:56:13 | 只看該作者
,Kullback–Leibler Likelihood and Entropy Family,Besides empirical likelihood, the Kullback–Leibler likelihood is another popular method to calibrate auxiliary information. The entropy family has also been used extensively in information theory. We mainly focus on discussions for continuous random variable cases. The discrete cases can be treated similarly.
56#
發(fā)表于 2025-3-31 09:03:10 | 只看該作者
57#
發(fā)表于 2025-3-31 12:11:28 | 只看該作者
58#
發(fā)表于 2025-3-31 16:58:57 | 只看該作者
59#
發(fā)表于 2025-3-31 20:22:32 | 只看該作者
Discrete Data Models,The logistic regression model has been widely used in statistical literature for analyzing categorical data. In this chapter we present many other useful discrete data models. If the data collection process is retrospective, then we end up with different biased sampling problems.
60#
發(fā)表于 2025-4-1 00:10:15 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 14:19
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
阳泉市| 富川| 武川县| 牟定县| 吐鲁番市| 达日县| 固阳县| 云和县| 和龙市| 瑞昌市| 安义县| 万安县| 兴国县| 南阳市| 融水| 延川县| 卢氏县| 如东县| 玉田县| 慈溪市| 绍兴县| 峨眉山市| 亳州市| 池州市| 镶黄旗| 宜都市| 甘南县| 岑溪市| 万宁市| 江陵县| 元朗区| 延庆县| 扎兰屯市| 东源县| 改则县| 望都县| 连云港市| 饶平县| 漳平市| 科尔| 治县。|