找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Beyond Quasicrystals; Les Houches, March 7 Fran?oise Axel,Denis Gratias Conference proceedings 1995 Springer-Verlag Berlin Heidelberg 1995

[復(fù)制鏈接]
樓主: quick-relievers
21#
發(fā)表于 2025-3-25 03:24:29 | 只看該作者
22#
發(fā)表于 2025-3-25 10:41:46 | 只看該作者
23#
發(fā)表于 2025-3-25 13:59:25 | 只看該作者
24#
發(fā)表于 2025-3-25 16:07:43 | 只看該作者
25#
發(fā)表于 2025-3-25 23:25:31 | 只看該作者
The pentacrystalsntacrystal is any quasicrystal whose points can be written, relative to some basis {..,..., ..} of a real .-dimensional Euclidean space ?., with coefficients in ?[.], the quadratic extension of the rational number field ?. In these lecture notes all quasicrystals are pentacrystals even if they do.no
26#
發(fā)表于 2025-3-26 00:31:49 | 只看該作者
27#
發(fā)表于 2025-3-26 05:56:05 | 只看該作者
28#
發(fā)表于 2025-3-26 09:06:18 | 只看該作者
From Quasiperiodic to More Complex Systemsmer case the diffraction peaks are infinitely sharp for a perfect infinite crystal, in the latter there are no sharp peaks. The presence of some disorder does not eliminate sharp Bragg peaks as long as long-range order is preserved. Moreover, the sharp Bragg peaks lie on a lattice, the reciprocal la
29#
發(fā)表于 2025-3-26 13:13:09 | 只看該作者
Matching Rules and Quasiperiodicity: the Octagonal Tilingsthe main problems about quasicrystals is to understand the simple possibility of a non periodic long range order, since no two atoms have exactly the same environment up to infinity. One possible solution to this problem is to consider that the order stems from privileged local configurations and is
30#
發(fā)表于 2025-3-26 18:39:14 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 10:01
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
资兴市| 南靖县| 高陵县| 防城港市| 施甸县| 东城区| 吴堡县| 长垣县| 保德县| 于田县| 嵊州市| 来安县| 舒兰市| 汉中市| 会同县| 怀柔区| 泸溪县| 奎屯市| 丰都县| 九寨沟县| 湖南省| 桃园县| 嘉黎县| 灵丘县| 奎屯市| 乡宁县| 凤山县| 扎赉特旗| 皮山县| 米林县| 嵩明县| 洮南市| 洞口县| 麻城市| 锦州市| 常德市| 阜南县| 察雅县| 应城市| 新化县| 巴东县|