找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Beyond Quasicrystals; Les Houches, March 7 Fran?oise Axel,Denis Gratias Conference proceedings 1995 Springer-Verlag Berlin Heidelberg 1995

[復制鏈接]
樓主: quick-relievers
21#
發(fā)表于 2025-3-25 03:24:29 | 只看該作者
22#
發(fā)表于 2025-3-25 10:41:46 | 只看該作者
23#
發(fā)表于 2025-3-25 13:59:25 | 只看該作者
24#
發(fā)表于 2025-3-25 16:07:43 | 只看該作者
25#
發(fā)表于 2025-3-25 23:25:31 | 只看該作者
The pentacrystalsntacrystal is any quasicrystal whose points can be written, relative to some basis {..,..., ..} of a real .-dimensional Euclidean space ?., with coefficients in ?[.], the quadratic extension of the rational number field ?. In these lecture notes all quasicrystals are pentacrystals even if they do.no
26#
發(fā)表于 2025-3-26 00:31:49 | 只看該作者
27#
發(fā)表于 2025-3-26 05:56:05 | 只看該作者
28#
發(fā)表于 2025-3-26 09:06:18 | 只看該作者
From Quasiperiodic to More Complex Systemsmer case the diffraction peaks are infinitely sharp for a perfect infinite crystal, in the latter there are no sharp peaks. The presence of some disorder does not eliminate sharp Bragg peaks as long as long-range order is preserved. Moreover, the sharp Bragg peaks lie on a lattice, the reciprocal la
29#
發(fā)表于 2025-3-26 13:13:09 | 只看該作者
Matching Rules and Quasiperiodicity: the Octagonal Tilingsthe main problems about quasicrystals is to understand the simple possibility of a non periodic long range order, since no two atoms have exactly the same environment up to infinity. One possible solution to this problem is to consider that the order stems from privileged local configurations and is
30#
發(fā)表于 2025-3-26 18:39:14 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 12:53
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
民勤县| 吉水县| 青神县| 宁都县| 互助| 饶平县| 贵阳市| 镇巴县| 喜德县| 光山县| 稻城县| 盖州市| 松原市| 汉寿县| 甘肃省| 壶关县| 独山县| 宁河县| 阳谷县| 当雄县| 兴海县| 逊克县| 顺昌县| 登封市| 肥城市| 凤庆县| 仲巴县| 五家渠市| 蛟河市| 郓城县| 苏州市| 永泰县| 宜丰县| 双辽市| 会宁县| 湄潭县| 扬州市| 白城市| 漳浦县| 汕头市| 云梦县|