找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Beyond Planar Graphs; Communications of NI Seok-Hee Hong,Takeshi Tokuyama Book 2020 Springer Nature Singapore Pte Ltd. 2020 Graph Algorithm

[復(fù)制鏈接]
樓主: Intermediary
11#
發(fā)表于 2025-3-23 10:59:05 | 只看該作者
12#
發(fā)表于 2025-3-23 17:40:12 | 只看該作者
Angular Resolutions: Around Vertices and Crossings,/total angular resolution of any straight-line drawing?of the graph. In this chapter, we review some of the results on angular resolution in the literature, and identify several open problems in the field.
13#
發(fā)表于 2025-3-23 20:45:14 | 只看該作者
Crossing Layout in Non-planar Graph Drawings,c graphs?as a way to represent crossings, the slanted layout of crossings in orthogonal graph layouts, and minimizing bundled rather than individual crossings. Further, we look at concepts such as confluent graph layout and partial edge drawings, which both have no visible crossings.
14#
發(fā)表于 2025-3-23 23:48:23 | 只看該作者
Simultaneous Embedding, of planarity. Afterward, we survey algorithmic approaches to the . problem, give an overview of recent results, and discuss their limitations. We close with a brief discussion of some recent variations of the simultaneous embedding?problem.
15#
發(fā)表于 2025-3-24 03:18:09 | 只看該作者
16#
發(fā)表于 2025-3-24 06:44:59 | 只看該作者
17#
發(fā)表于 2025-3-24 11:46:56 | 只看該作者
1-Planar Graphs,begin with formally defining 1-plane and 1-planar graphs and mainly focus on “maximal”, “maximum,” and “optimal” 1-planar graphs, which are relatively easy to treat. This chapter reviews some basic properties of these graphs.
18#
發(fā)表于 2025-3-24 17:57:54 | 只看該作者
19#
發(fā)表于 2025-3-24 19:59:35 | 只看該作者
and objectives of this book include 1) to timely provide a state-of-the-art survey and a bibliography on beyond planar graphs; 2) to set the research agenda on beyond planar graphs by identifying fundamental r978-981-15-6535-9978-981-15-6533-5
20#
發(fā)表于 2025-3-24 23:19:56 | 只看該作者
Edge Partitions and Visibility Representations of 1-planar Graphs, studied for planar graphs, they recently attracted attention also for 1-planar graphs, i.e., those graphs that can be drawn in the plane such that each edge is crossed at most once. After giving an overview of 1-planarity, we survey the main results concerning edge partitions and visibility represe
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 17:20
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
浠水县| 英山县| 象州县| 疏附县| 怀安县| 察雅县| 深泽县| 阆中市| 竹溪县| 介休市| 荔波县| 汝城县| 高平市| 明光市| 中阳县| 浙江省| 台江县| 绵竹市| 大安市| 横峰县| 台江县| 都匀市| 永宁县| 乌兰浩特市| 淅川县| 威宁| 闽侯县| 青海省| 藁城市| 汪清县| 濉溪县| 布拖县| 井陉县| 达日县| 徐州市| 临泽县| 安庆市| 涞水县| 杨浦区| 武义县| 仙居县|