找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Bernoulli 1713, Bayes 1763, Laplace 1813; Anniversary Volume. Jerzy Neyman,Lucien M. Cam Conference proceedings 1965 Springer-Verlag Berli

[復(fù)制鏈接]
樓主: 轉(zhuǎn)變
51#
發(fā)表于 2025-3-30 12:04:16 | 只看該作者
Stationary and Isotropic Random Functions,We are going to deal with random functions . (.) = . (.., ... , ..) of a point . (..: .-dimensional Euclidean space). We assume:
52#
發(fā)表于 2025-3-30 13:47:46 | 只看該作者
53#
發(fā)表于 2025-3-30 18:39:36 | 只看該作者
First-Passage Percolation, Subadditive Processes, Stochastic Networks, and Generalized Renewal Theo.. In 1957, Broadbent and Hammersley gave a mathematical formulation of percolation theory. Since then much work has been done in this field and has now led to first-passage percolation problems. In the following two examples we contrast the early formulation with its more recent developments.
54#
發(fā)表于 2025-3-30 23:18:53 | 只看該作者
Strong Limit Theorems for Stochastic Processes and Orthogonality Conditions for Probability MeasureLet . (.), 0≦.≦., be the Wiener process, that is, a real Gaussian stochastic process with . and let .. for . = 1, 2,... be the sequence of increasing integers. Consider the following functional of . (.): . In 1940 . [.] discovered the following interesting result concerning this functional.
55#
發(fā)表于 2025-3-31 04:31:28 | 只看該作者
56#
發(fā)表于 2025-3-31 08:30:52 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 08:23
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
永胜县| 都江堰市| 新干县| 山丹县| 洞口县| 凌海市| 个旧市| 阆中市| 乌兰浩特市| 隆林| 祁东县| 花莲县| 阳朔县| 双牌县| 饶河县| 华坪县| 柏乡县| 祁阳县| 历史| 巴彦县| 兴仁县| 松原市| 凤翔县| 鄂尔多斯市| 阿克陶县| 日照市| 凌云县| 广宗县| 藁城市| 茂名市| 裕民县| 杭锦旗| 永州市| 奉新县| 大足县| 香港 | 凤冈县| 牡丹江市| 思南县| 嘉禾县| 札达县|