找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Belief Revision in Non-Classical Logics; Márcio Moretto Ribeiro Book 2013 The Author(s) 2013 AGM Theory.Belief Revision.Knowledge Represen

[復(fù)制鏈接]
樓主: cerebral-cortex
21#
發(fā)表于 2025-3-25 06:03:52 | 只看該作者
Consequence,a logic as a pair . such that . is the .of the logic and . is the .. that gives the consequences of a set of sentences..We are particularly interested in Tarskian logics and certain properties that they may satisfy e.g., compactness, decomposability, distribuitivity, etc. In this chapter, Tarskian l
22#
發(fā)表于 2025-3-25 09:22:33 | 只看該作者
Logics,nd description logics (DLs). Classical Propositional Logic is the canonical example of well-behaved logic logic, i.e., a logic that satisfies the AGM assumptions. Besides the interest in the properties that these logics satisfy, they were chosen for diverse reasons. Intuitionistic logic has great in
23#
發(fā)表于 2025-3-25 12:16:45 | 只看該作者
24#
發(fā)表于 2025-3-25 18:02:27 | 只看該作者
25#
發(fā)表于 2025-3-25 20:19:42 | 只看該作者
26#
發(fā)表于 2025-3-26 02:43:12 | 只看該作者
Base Revision in Logics Without Negation,ssumption. In this chapter, we present a list of six constructions for revision that do not depend on negation. Each construction is characterized by a set of postulates. Furthermore, the representation theorems that prove these characterizations hold in any compact logic.
27#
發(fā)表于 2025-3-26 08:05:39 | 只看該作者
Algorithms for Belief Bases,nt algorithms for computing these sets. The similarities between the algorithms suggests that they are deeply related. We present this relation formally and show examples where computing the remainder set is much easier than computing the kernel and examples where the opposite is the case.
28#
發(fā)表于 2025-3-26 11:27:41 | 只看該作者
29#
發(fā)表于 2025-3-26 14:12:02 | 只看該作者
2191-5768 The author also presents algorithms for the most important constructions in belief bases. Researchers and practitioners in theoretical computing will find this an invaluable resource..978-1-4471-4185-3978-1-4471-4186-0Series ISSN 2191-5768 Series E-ISSN 2191-5776
30#
發(fā)表于 2025-3-26 20:43:49 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 06:13
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
正宁县| 湄潭县| 巴彦淖尔市| 湘潭县| 教育| 辽宁省| 蛟河市| 浦江县| 甘孜县| 江西省| 漳州市| 加查县| 桐乡市| 永宁县| 台江县| 吉林省| 灵川县| 黑水县| 建平县| 宜宾市| 横山县| 阿荣旗| 兴安县| 宁陵县| 西充县| 武宣县| 凯里市| 潼南县| 凤翔县| 北安市| 筠连县| 望城县| 南川市| 烟台市| 宜都市| 临沭县| 邵武市| 扬中市| 登封市| 长兴县| 瑞丽市|