找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Belief Functions: Theory and Applications; Third International Fabio Cuzzolin Conference proceedings 2014 Springer International Publishin

[復制鏈接]
樓主: culinary
51#
發(fā)表于 2025-3-30 09:08:47 | 只看該作者
Modeling Qualitative Assessments under the Belief Function Framework generate quantitative information from qualitative assessments. Therefore, we suggest to represent the decision maker preferences in different levels where the indifference, strict preference, weak preference and incompleteness relations are considered. Introducing the weak preference relation sepa
52#
發(fā)表于 2025-3-30 13:28:35 | 只看該作者
0302-9743 ford, UK, in September 2014. The 47 revised full papers presented in this book were carefully selected and reviewed from 56 submissions. The papers are organized in topical sections on belief combination; machine learning; applications; theory; networks; information fusion; data association; and geo
53#
發(fā)表于 2025-3-30 17:58:11 | 只看該作者
Michaela Fink,Reimer Gronemeyerof the belief hierarchical clustering is to allow an object to belong to one or several clusters. To each belonging, a degree of belief is associated, and clusters are combined based on the pignistic properties. Experiments with real uncertain data show that our proposed method can be considered as a propitious tool.
54#
發(fā)表于 2025-3-30 21:48:50 | 只看該作者
Reimer Gronemeyer,Michaela Fink class memberships are computed using the soft labels and the current parameter estimates; then, new parameter estimates are obtained using these expected memberships. Experimental results show the interest of our approach when the data labels are corrupted with noise.
55#
發(fā)表于 2025-3-31 02:51:22 | 只看該作者
56#
發(fā)表于 2025-3-31 06:53:04 | 只看該作者
57#
發(fā)表于 2025-3-31 13:15:40 | 只看該作者
58#
發(fā)表于 2025-3-31 15:07:50 | 只看該作者
Belief Hierarchical Clusteringof the belief hierarchical clustering is to allow an object to belong to one or several clusters. To each belonging, a degree of belief is associated, and clusters are combined based on the pignistic properties. Experiments with real uncertain data show that our proposed method can be considered as a propitious tool.
59#
發(fā)表于 2025-3-31 17:41:58 | 只看該作者
60#
發(fā)表于 2025-4-1 01:16:34 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 10:49
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
荥阳市| 衡南县| 通许县| 儋州市| 关岭| 保亭| 米泉市| 奉化市| 宝应县| 黄梅县| 冕宁县| 洱源县| 佛坪县| 五大连池市| 和林格尔县| 中山市| 邹城市| 花垣县| 阿克陶县| 蒙山县| 牙克石市| 澎湖县| 微博| 太仆寺旗| 锡林浩特市| 友谊县| 汉源县| 无锡市| 博兴县| 格尔木市| 黎平县| 皋兰县| 汾阳市| 上蔡县| 浙江省| 新野县| 中西区| 堆龙德庆县| 嵩明县| 灵川县| 武隆县|