找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Belief Functions: Theory and Applications; Third International Fabio Cuzzolin Conference proceedings 2014 Springer International Publishin

[復制鏈接]
樓主: culinary
51#
發(fā)表于 2025-3-30 09:08:47 | 只看該作者
Modeling Qualitative Assessments under the Belief Function Framework generate quantitative information from qualitative assessments. Therefore, we suggest to represent the decision maker preferences in different levels where the indifference, strict preference, weak preference and incompleteness relations are considered. Introducing the weak preference relation sepa
52#
發(fā)表于 2025-3-30 13:28:35 | 只看該作者
0302-9743 ford, UK, in September 2014. The 47 revised full papers presented in this book were carefully selected and reviewed from 56 submissions. The papers are organized in topical sections on belief combination; machine learning; applications; theory; networks; information fusion; data association; and geo
53#
發(fā)表于 2025-3-30 17:58:11 | 只看該作者
Michaela Fink,Reimer Gronemeyerof the belief hierarchical clustering is to allow an object to belong to one or several clusters. To each belonging, a degree of belief is associated, and clusters are combined based on the pignistic properties. Experiments with real uncertain data show that our proposed method can be considered as a propitious tool.
54#
發(fā)表于 2025-3-30 21:48:50 | 只看該作者
Reimer Gronemeyer,Michaela Fink class memberships are computed using the soft labels and the current parameter estimates; then, new parameter estimates are obtained using these expected memberships. Experimental results show the interest of our approach when the data labels are corrupted with noise.
55#
發(fā)表于 2025-3-31 02:51:22 | 只看該作者
56#
發(fā)表于 2025-3-31 06:53:04 | 只看該作者
57#
發(fā)表于 2025-3-31 13:15:40 | 只看該作者
58#
發(fā)表于 2025-3-31 15:07:50 | 只看該作者
Belief Hierarchical Clusteringof the belief hierarchical clustering is to allow an object to belong to one or several clusters. To each belonging, a degree of belief is associated, and clusters are combined based on the pignistic properties. Experiments with real uncertain data show that our proposed method can be considered as a propitious tool.
59#
發(fā)表于 2025-3-31 17:41:58 | 只看該作者
60#
發(fā)表于 2025-4-1 01:16:34 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 13:08
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
永德县| 抚州市| 湟中县| 康定县| 宣恩县| 会泽县| 肃宁县| 宁陕县| 天祝| 涪陵区| 万全县| 柳林县| 平山县| 凤山县| 筠连县| 义乌市| 石台县| 新邵县| 赫章县| 镇坪县| 鄂托克前旗| 丹江口市| 新野县| 中西区| 沁水县| 阿合奇县| 金塔县| 宝兴县| 盐城市| 海晏县| 潢川县| 疏勒县| 上犹县| 江孜县| 徐州市| 双柏县| 瑞金市| 越西县| 新巴尔虎右旗| 秭归县| 衡阳县|