找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Beginning Anomaly Detection Using Python-Based Deep Learning; With Keras and PyTor Sridhar‘Alla,Suman Kalyan Adari Book 20191st edition Sri

[復(fù)制鏈接]
樓主: Jejunum
11#
發(fā)表于 2025-3-23 11:57:20 | 只看該作者
12#
發(fā)表于 2025-3-23 15:23:51 | 只看該作者
13#
發(fā)表于 2025-3-23 21:56:23 | 只看該作者
14#
發(fā)表于 2025-3-24 00:07:42 | 只看該作者
Traditional Methods of Anomaly Detection,In this chapter, you will learn about traditional methods of anomaly detection. You will also learn how various statistical methods and machine learning algorithms work and how they can be used to detect anomalies and how you can implement anomaly detection using several algorithms.
15#
發(fā)表于 2025-3-24 05:35:25 | 只看該作者
16#
發(fā)表于 2025-3-24 07:41:01 | 只看該作者
Autoencoders,In this chapter, you will learn about autoencoder neural networks and the different types of autoencoders. You will also learn how autoencoders can be used to detect anomalies and how you can implement anomaly detection using autoencoders.
17#
發(fā)表于 2025-3-24 13:20:08 | 只看該作者
18#
發(fā)表于 2025-3-24 17:22:03 | 只看該作者
Temporal Convolutional Networks,In this chapter, you will learn about temporal convolutional networks (TCNs). You will also learn how TCNs work and how they can be used to detect anomalies and how you can implement anomaly detection using a TCN.
19#
發(fā)表于 2025-3-24 20:33:50 | 只看該作者
Book 20191st editionin Python, the book focuses on how various deep learning models can be applied to semi-supervised and unsupervised anomaly detection tasks..This book begins with an explanation of what anomaly detection is, what it is used for, and its importance. After covering statistical and traditional machine l
20#
發(fā)表于 2025-3-25 02:44:54 | 只看該作者
Covers the most contemporary approaches to anomaly detectionUtilize this easy-to-follow beginner‘s guide to understand how deep learning can be applied to the task of anomaly detection. Using Keras and PyTorch in Python, the book focuses on how various deep learning models can be applied to semi-sup
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 00:06
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
磐石市| 杨浦区| 静安区| 镇平县| 永吉县| 喀喇沁旗| 茶陵县| 昔阳县| 分宜县| 宁夏| 屏东县| 烟台市| 灵宝市| 上林县| 阿拉善盟| 盐山县| 左云县| 尼玛县| 南漳县| 西乌珠穆沁旗| 莱州市| 重庆市| 霍林郭勒市| 晴隆县| 仙桃市| 镇赉县| 丰原市| 泰安市| 泽普县| 潼关县| 江川县| 尼玛县| 五原县| 永昌县| 平乐县| 新乡市| 九龙坡区| 湘西| 志丹县| 措美县| 大洼县|