找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Bayesian Statistics in Actuarial Science; with Emphasis on Cre Stuart A. Klugman Book 1992 Springer Science+Business Media New York 1992 ac

[復(fù)制鏈接]
樓主: OAK
21#
發(fā)表于 2025-3-25 05:41:19 | 只看該作者
22#
發(fā)表于 2025-3-25 08:07:43 | 只看該作者
23#
發(fā)表于 2025-3-25 14:04:29 | 只看該作者
The Nikkei Stock Average Prediction by SVMIn this Chapter one more restriction to the normal model of Chapter 6 will be imposed: linearity in the parameters. Within this model most all standard situations involving severity, pure premiums, or loss ratios can be handled. The only reasonable case that cannot be handled is the Poisson model for frequency. This will be covered in Chapter 9.
24#
發(fā)表于 2025-3-25 16:04:51 | 只看該作者
Lecture Notes in Computer ScienceIn this Chapter a number of data sets will be introduced. Then the credibility models from the previous Chapter will be analyzed.
25#
發(fā)表于 2025-3-25 21:58:21 | 只看該作者
26#
發(fā)表于 2025-3-26 01:39:27 | 只看該作者
Examples,In this Chapter a number of data sets will be introduced. Then the credibility models from the previous Chapter will be analyzed.
27#
發(fā)表于 2025-3-26 07:04:30 | 只看該作者
https://doi.org/10.1007/978-94-017-0845-6actuarial science; algorithm; bayesian statistics; calculus; rating; statistical analysis; statistics
28#
發(fā)表于 2025-3-26 08:51:07 | 只看該作者
978-90-481-5790-7Springer Science+Business Media New York 1992
29#
發(fā)表于 2025-3-26 15:38:44 | 只看該作者
30#
發(fā)表于 2025-3-26 19:10:45 | 只看該作者
Prediction with Parameter Uncertainty,l form, but unknown parameters. Of interest is the value of a future observation whose distribution also depends on these parameters. Of course, this is the traditional actuarial problem. The observations are the benefits paid in the past to policyholders and we desire to predict the payments that will be made in the future.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 04:02
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
镇江市| 高青县| 高雄市| 简阳市| 满洲里市| 伊宁市| 宽甸| 广宁县| 信丰县| 巩义市| 洛川县| 江阴市| 历史| 景宁| 宜兴市| 南城县| 体育| 无极县| 陇西县| 万载县| 车险| 翁源县| 扎囊县| 高尔夫| 西乌珠穆沁旗| 高碑店市| 太和县| 沐川县| 新和县| 东乡县| 长垣县| 田林县| 广水市| 永州市| 信阳市| 兰溪市| 井冈山市| 永吉县| 鞍山市| 夏邑县| 深泽县|