找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Bayesian Inference for Probabilistic Risk Assessment; A Practitioner‘s Gui Dana Kelly,Curtis Smith Book 2011 Springer-Verlag London Limited

[復(fù)制鏈接]
查看: 34119|回復(fù): 48
樓主
發(fā)表于 2025-3-21 18:45:40 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
期刊全稱(chēng)Bayesian Inference for Probabilistic Risk Assessment
期刊簡(jiǎn)稱(chēng)A Practitioner‘s Gui
影響因子2023Dana Kelly,Curtis Smith
視頻videohttp://file.papertrans.cn/182/181851/181851.mp4
發(fā)行地址Formulates complex problems without becoming weighed down by mathematical detail.Presents a modern perspective of Bayesian networks and Markov chain Monte Carlo (MCMC) sampling.Written by experts
學(xué)科分類(lèi)Springer Series in Reliability Engineering
圖書(shū)封面Titlebook: Bayesian Inference for Probabilistic Risk Assessment; A Practitioner‘s Gui Dana Kelly,Curtis Smith Book 2011 Springer-Verlag London Limited
影響因子.Bayesian Inference for Probabilistic Risk Assessment. provides a Bayesian foundation for framing probabilistic problems and performing inference on these problems. Inference in the book employs a modern computational approach known as Markov chain Monte Carlo (MCMC).?The MCMC approach may be implemented using custom-written routines or existing general purpose commercial or open-source software.?This book uses an open-source program called OpenBUGS (commonly referred to as WinBUGS) to solve the inference problems that are described.?A powerful feature of OpenBUGS is its automatic selection of an appropriate MCMC sampling scheme for a given problem. The authors provide analysis “building blocks” that can be modified, combined, or used as-is to solve a variety of challenging problems..The MCMC approach used is implemented via textual scripts similar to a macro-type programming language.?Accompanying most scripts is a graphical Bayesian network illustrating the elements of the script and the overall inference problem being solved.?.Bayesian Inference for Probabilistic Risk Assessment .also covers the important topics of MCMC convergence and Bayesian model checking..Bayesian Inference
Pindex Book 2011
The information of publication is updating

書(shū)目名稱(chēng)Bayesian Inference for Probabilistic Risk Assessment影響因子(影響力)




書(shū)目名稱(chēng)Bayesian Inference for Probabilistic Risk Assessment影響因子(影響力)學(xué)科排名




書(shū)目名稱(chēng)Bayesian Inference for Probabilistic Risk Assessment網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱(chēng)Bayesian Inference for Probabilistic Risk Assessment網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱(chēng)Bayesian Inference for Probabilistic Risk Assessment被引頻次




書(shū)目名稱(chēng)Bayesian Inference for Probabilistic Risk Assessment被引頻次學(xué)科排名




書(shū)目名稱(chēng)Bayesian Inference for Probabilistic Risk Assessment年度引用




書(shū)目名稱(chēng)Bayesian Inference for Probabilistic Risk Assessment年度引用學(xué)科排名




書(shū)目名稱(chēng)Bayesian Inference for Probabilistic Risk Assessment讀者反饋




書(shū)目名稱(chēng)Bayesian Inference for Probabilistic Risk Assessment讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶(hù)組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:27:37 | 只看該作者
板凳
發(fā)表于 2025-3-22 00:55:46 | 只看該作者
地板
發(fā)表于 2025-3-22 06:13:44 | 只看該作者
5#
發(fā)表于 2025-3-22 11:05:47 | 只看該作者
Modeling Failure with Repair,s not repaired, and the component or system is replaced following failure, then the earlier analysis methods are applicable. However, in this chapter, we consider the case in which the failed component or system is repaired and placed back into service.
6#
發(fā)表于 2025-3-22 13:23:37 | 只看該作者
Bayesian Treatment of Uncertain Data,pect to observed data. For example, the number of binomial demands may not have been recorded and may have to be estimated. Similarly, the exposure time in the Poisson distribution may have to be estimated. One may not always be able to tell the exact number of failures that have occurred, because o
7#
發(fā)表于 2025-3-22 17:28:25 | 只看該作者
8#
發(fā)表于 2025-3-22 23:54:23 | 只看該作者
Bayesian Inference for Multilevel Fault Tree Models,ysis framework to perform probabilistic inference on the model. For example, we might have information on the overall system performance, but we might also have subsystem and component level information. We demonstrate the analysis approach using a simple fault tree model containing a single top eve
9#
發(fā)表于 2025-3-23 01:21:50 | 只看該作者
10#
發(fā)表于 2025-3-23 06:47:21 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 11:22
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
张掖市| 天祝| 富源县| 沂源县| 崇文区| 柏乡县| 太和县| 沂南县| 朝阳区| 礼泉县| 禄丰县| 浑源县| 太湖县| 慈利县| 友谊县| 永清县| 策勒县| 赫章县| 岳阳县| 东乌珠穆沁旗| 建水县| 拜城县| 湘阴县| 江华| 岳池县| 土默特左旗| 招远市| 新绛县| 酉阳| 阿合奇县| 海口市| 南昌市| 康乐县| 蓬莱市| 罗甸县| 正定县| 铁岭县| 静安区| 腾冲县| 民乐县| 平塘县|