找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Bayesian Computation with R; Jim Albert Textbook 20071st edition Springer-Verlag New York 2007 Bayesian Inference.Hierarchical modeling.Ma

[復(fù)制鏈接]
樓主: 推翻
31#
發(fā)表于 2025-3-26 22:56:28 | 只看該作者
Regression Models,el and describe algorithms to simulate from the joint distribution of regression parameters and error variance and the predictive distribution of future observations. One can judge the adequacy of the fitted model through use of the posterior predictive distribution and the inspection of the posteri
32#
發(fā)表于 2025-3-27 04:22:31 | 只看該作者
Gibbs Sampling,ppose that we partition the parameter vector of interest into . components . = (.1.), where . may consist of a vector of parameters. The MCMC algorithm is implemented by sampling in turn from the . conditional posterior distributions.
33#
發(fā)表于 2025-3-27 07:26:39 | 只看該作者
34#
發(fā)表于 2025-3-27 10:05:27 | 只看該作者
35#
發(fā)表于 2025-3-27 16:55:02 | 只看該作者
Claus Hüsselmann,Thomas Hemmannsian inference for a variance for a normal population and inference for a Poisson mean when informative prior information is available. For both problems, summarization of the posterior distribution is facilitated by the use of R functions to compute and simulate distributions from the exponential f
36#
發(fā)表于 2025-3-27 18:51:41 | 只看該作者
Claus Hüsselmann,Thomas Hemmannation or multinomial parameters, posterior inference is accomplished by simulating from distributions of standard forms. Once a simulated sample is obtained from the joint posterior, it is straightforward to perform transformations on these simulated draws to learn about any function of the paramete
37#
發(fā)表于 2025-3-28 00:23:53 | 只看該作者
38#
發(fā)表于 2025-3-28 06:10:56 | 只看該作者
Rolf Irion,Fabian Schmidt-Schr?derrior distribution, but it can be difficult to set up since it requires the construction of a suitable proposal density. Importance sampling and SIR algorithms are also general-purpose algorithms, but they also require proposal densities that may be difficult to find for high-dimensional problems. In
39#
發(fā)表于 2025-3-28 08:17:19 | 只看該作者
40#
發(fā)表于 2025-3-28 12:26:59 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 15:45
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
九龙城区| 富顺县| 陇南市| 屏东市| 上虞市| 定西市| 晋中市| 玉林市| 吐鲁番市| 墨江| 海南省| 德惠市| 新龙县| 都江堰市| 龙南县| 凤台县| 凌云县| 玛曲县| 确山县| 于田县| 彭泽县| 九寨沟县| 徐水县| 益阳市| 化隆| 都昌县| 襄城县| 永善县| 隆化县| 张家界市| 乌鲁木齐市| 新密市| 南华县| 曲沃县| 林周县| 岗巴县| 鹿泉市| 虹口区| 湛江市| 南昌县| 台前县|