找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Basis Sets in Computational Chemistry; Eva Perlt Book 2021 Springer Nature Switzerland AG 2021 quantum chemistry.wave function.basis sets.

[復(fù)制鏈接]
樓主: 威風(fēng)
11#
發(fā)表于 2025-3-23 12:54:37 | 只看該作者
12#
發(fā)表于 2025-3-23 16:00:05 | 只看該作者
13#
發(fā)表于 2025-3-23 20:48:36 | 只看該作者
14#
發(fā)表于 2025-3-24 00:39:55 | 只看該作者
15#
發(fā)表于 2025-3-24 04:58:01 | 只看該作者
Francesco Lupi,Michele Lanzettaies, they are illustrated on the example of the plane-wave discretization of the periodic Gross-Pitaevskii model for Bose-Einstein condensates. This model shares many common features with the Hartree-Fock and Kohn-Sham models, while being mathematically simpler. Extensions to Kohn-Sham models are discussed.
16#
發(fā)表于 2025-3-24 06:48:57 | 只看該作者
17#
發(fā)表于 2025-3-24 14:03:04 | 只看該作者
An Introduction to Discretization Error Analysis for Computational Chemists,ies, they are illustrated on the example of the plane-wave discretization of the periodic Gross-Pitaevskii model for Bose-Einstein condensates. This model shares many common features with the Hartree-Fock and Kohn-Sham models, while being mathematically simpler. Extensions to Kohn-Sham models are discussed.
18#
發(fā)表于 2025-3-24 17:59:26 | 只看該作者
Basis Sets for Heavy Atoms,ess of the basis set used for these heavy atoms and, in most cases, the relativistic effects. Thus, this chapter addresses the basis sets for heavy elements with a focus on the understanding of transition d-metal with the potential biological application.
19#
發(fā)表于 2025-3-24 19:01:21 | 只看該作者
https://doi.org/10.1007/978-3-030-96060-5 correlation, and convergence toward the exact, complete basis set limit. Finally, selected basis sets are presented, along with the characteristics pertinent to their construction and successful applications.
20#
發(fā)表于 2025-3-25 00:25:36 | 只看該作者
Antonio Maturo,Rina Manuela Contini implementation of such methods for extended systems is a challenging topic. In any case, the task is to solve the Schr?dinger or Kohn-Sham equations numerically. The approximate solution is usually expanded in a basis set. The purpose of this chapter is an overview of these basis sets, with the main focus on Gaussian basis sets.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 05:02
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
内江市| 东乡族自治县| 莱芜市| 庆城县| 翼城县| 汝阳县| 太仆寺旗| 卫辉市| 星子县| 文昌市| 漠河县| 凤冈县| 左云县| 甘洛县| 仪征市| 六枝特区| 德惠市| 杭锦旗| 定远县| 芷江| 墨江| 滦南县| 新蔡县| 南安市| 珠海市| 枣庄市| 十堰市| 武宁县| 石首市| 玉溪市| 西乡县| 海兴县| 信宜市| 渭源县| 荆门市| 德江县| 南溪县| 伊通| 黄陵县| 陇西县| 纳雍县|