找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Basic Topological Structures of Ordinary Differential Equations; V. V. Filippov Book 1998 Springer Science+Business Media Dordrecht 1998 C

[復(fù)制鏈接]
樓主: 閘門
41#
發(fā)表于 2025-3-28 16:39:04 | 只看該作者
J.H. Kühn,M. Steinhauser,M. Tentyukovthe title of the chapter is a convenient tool of investigation. Further we will see that we can apply it not only in the discussion of the continuity but in the investigation of other properties of solution spaces, for instance, in the proof of the existence theorems.
42#
發(fā)表于 2025-3-28 21:54:03 | 只看該作者
43#
發(fā)表于 2025-3-28 23:10:58 | 只看該作者
44#
發(fā)表于 2025-3-29 04:44:38 | 只看該作者
45#
發(fā)表于 2025-3-29 09:54:42 | 只看該作者
46#
發(fā)表于 2025-3-29 11:52:57 | 只看該作者
47#
發(fā)表于 2025-3-29 17:58:09 | 只看該作者
Peter Marquard,Matthias SteinhauserIn this chapter we look at what aspect the notion of the change of variables takes in framework of our theory. We also take some further steps in the development of our topological tools.
48#
發(fā)表于 2025-3-29 20:00:32 | 只看該作者
https://doi.org/10.1007/978-3-319-47066-5In this chapter we consider some of the simplest cases of the application of developed tools. We also compare our methods with the classical theory.
49#
發(fā)表于 2025-3-30 00:18:30 | 只看該作者
50#
發(fā)表于 2025-3-30 07:29:17 | 只看該作者
Yann Simsont,Peter Gerlinger,Manfred AignerOur aim in this chapter is to see what specific character an increment in the order of equations and inclusions under consideration brings to the structure of the theory of the Cauchy problem, and how this may imply the possibility of a weakening of restrictions on functions appearing in equations (inclusions).
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 23:42
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
资兴市| 庄河市| 洛隆县| 绵阳市| 武宣县| 贵港市| 綦江县| 苍梧县| 六枝特区| 镇雄县| 莱阳市| 信宜市| 保康县| 普陀区| 彭阳县| 平定县| 蕉岭县| 辽阳市| 嘉鱼县| 任丘市| 北碚区| 平陆县| 略阳县| 丹阳市| 谢通门县| 小金县| 台州市| 威信县| 成安县| 长沙市| 扎囊县| 景洪市| 富宁县| 阳曲县| 邹平县| 克什克腾旗| 集安市| 崇州市| 永登县| 天柱县| 和田县|