找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Basic Theory of Ordinary Differential Equations; Po-Fang Hsieh,Yasutaka Sibuya Textbook 1999 Springer Science+Business Media New York 1999

[復(fù)制鏈接]
樓主: 滲漏
11#
發(fā)表于 2025-3-23 12:02:33 | 只看該作者
https://doi.org/10.1007/978-3-030-66792-4roblems (§§VI2—VI-4, topics including Green’s functions, self-adjointness, distribution of eigen-values, and eigenfunction expansion), (3) scattering problems (§§VI-5—VI-9, mostly focusing on reflectionless potentials), and (4) periodic potentials (§VI-10). The materials concerning these topics are
12#
發(fā)表于 2025-3-23 14:21:29 | 只看該作者
https://doi.org/10.1007/978-3-030-66792-4rpose is to show how much information we can glean from the limit matrix.. We are interested in the exponential growth of solutions and the asymptotic behavior of solutions. In order to measure the exponential growth of a function, we use Liapounoff’s type numbers which was originally introduced by
13#
發(fā)表于 2025-3-23 19:06:10 | 只看該作者
14#
發(fā)表于 2025-3-23 23:36:52 | 只看該作者
15#
發(fā)表于 2025-3-24 04:30:12 | 只看該作者
16#
發(fā)表于 2025-3-24 09:23:39 | 只看該作者
Anderson Transitions and Interactionsmple, as we mentioned it in Remark V-1-4, the divergent formal power series.is a formal solution of ..This equation has an actual solution .Integrating by parts,we obtain. Since.we conclude that.an asymptotic representation of an actual solution by means of a formal solution. In this chapter, we exp
17#
發(fā)表于 2025-3-24 14:36:29 | 只看該作者
18#
發(fā)表于 2025-3-24 16:55:01 | 只看該作者
19#
發(fā)表于 2025-3-24 20:13:26 | 只看該作者
20#
發(fā)表于 2025-3-25 02:35:35 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 09:06
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
依安县| 化州市| 威远县| 西乌珠穆沁旗| 邹平县| 定结县| 华亭县| 镇远县| 闵行区| 古浪县| 祁阳县| 静宁县| 琼中| 五台县| 东乡县| 北碚区| 广昌县| 资兴市| 黄大仙区| 义马市| 嘉黎县| 张家川| 定南县| 西藏| 西宁市| 应用必备| 林州市| 和平县| 东源县| 仁怀市| 丹寨县| 永德县| 兴和县| 彰化市| 大理市| 华坪县| 扶风县| 桐城市| 崇文区| 新竹县| 临澧县|