找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Basic Structures of Function Field Arithmetic; David Goss Book 1998 Springer-Verlag Berlin Heidelberg 1998 Dimension.Drinfeld module.Grad.

[復(fù)制鏈接]
樓主: 相反
11#
發(fā)表于 2025-3-23 10:34:45 | 只看該作者
12#
發(fā)表于 2025-3-23 14:43:43 | 只看該作者
Additional Topics,In this last section, we will briefly describe . current areas of research into the arithmetic described in the previous nine sections. We emphasize the word “some” as this section is not meant to be considered exhaustive.
13#
發(fā)表于 2025-3-23 21:30:33 | 只看該作者
14#
發(fā)表于 2025-3-24 01:33:12 | 只看該作者
978-3-540-63541-3Springer-Verlag Berlin Heidelberg 1998
15#
發(fā)表于 2025-3-24 02:45:15 | 只看該作者
David GossA new and fascinating area of math *.The author is a fundamental contributor to the field *.The first systematic treatment of this subject * Introduces vital areas of current research * Clear expositi
16#
發(fā)表于 2025-3-24 07:39:55 | 只看該作者
17#
發(fā)表于 2025-3-24 13:32:46 | 只看該作者
The Carlitz Module,e, most essential ideas about Drinfeld modules appear in the theory of the Carlitz module. Thus it is an excellent example for the reader to master and keep in mind when reading the more abstract general theory. Our basic reference is [C1], but see also [Go2].
18#
發(fā)表于 2025-3-24 14:58:07 | 只看該作者
Sign Normalized Rank 1 Drinfeld Modules, .. This basic construction is due to David Hayes [Ha3] [Ha2]. Thus we will also call them “Hayes-modules.” We will use Hayes-modules to construct a “cyclotomic theory” of function fields. The reader will find much that is familiar in these extensions from classical theory.
19#
發(fā)表于 2025-3-24 21:11:54 | 只看該作者
20#
發(fā)表于 2025-3-25 02:42:59 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-18 12:53
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
桂东县| 象州县| 宁化县| 泰州市| 西峡县| 酉阳| 塘沽区| 石景山区| 锦州市| 海城市| 美姑县| 夏津县| 望谟县| 荣成市| 彭阳县| 牙克石市| 五家渠市| 凌云县| 西安市| 睢宁县| 林州市| 华阴市| 扬中市| 丰镇市| 吉安县| 上林县| 汉源县| 曲沃县| 北辰区| 龙州县| 内黄县| 普陀区| 沭阳县| 开鲁县| 阜城县| 葫芦岛市| 涡阳县| 禹州市| 龙游县| 左权县| 桓仁|