找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Basic Real Analysis; Houshang H. Sohrab Textbook 20031st edition Birkh?user Boston 2003 Arithmetic.Cardinal number.Counting.Equivalence.ca

[復(fù)制鏈接]
樓主: Grievous
31#
發(fā)表于 2025-3-26 23:01:26 | 只看該作者
32#
發(fā)表于 2025-3-27 04:14:11 | 只看該作者
33#
發(fā)表于 2025-3-27 06:24:29 | 只看該作者
https://doi.org/10.1007/978-3-322-87580-8n are numerous and we shall not go into a detailed explanation of them. Probably the most important among them is that the space of all Riemann integrable fuctions on a compact interval [., .] ? ? is . with respect to the natural “metric”:
34#
發(fā)表于 2025-3-27 09:35:57 | 只看該作者
https://doi.org/10.1007/978-3-642-57987-5en chosen, especially when complements of sets (to be defined below) are involved in the discussion. Before defining the basic operations on sets, let us introduce a notation which will be used throughout the book.
35#
發(fā)表于 2025-3-27 17:06:56 | 只看該作者
https://doi.org/10.1007/978-3-8349-8227-8their . Here, the most important concept is that of a .. It will be used in Appendix A for a brief discussion of Cantor’s construction of real numbers from the Cauchy sequences in the set ? of rational numbers. The properties of sequences will be used in a short section on infinite series of real nu
36#
發(fā)表于 2025-3-27 19:05:26 | 只看該作者
Gegenstand der Produktionsplanung,oint, convergent sequence and Cauchy sequence. We then defined the concept of limit for general real-valued functions of a real variable, and proved that such limits can also be defined in terms of limits of sequences. Also, before introducing the related notion of ., we introduced (in Chapter 4) th
37#
發(fā)表于 2025-3-27 23:52:59 | 只看該作者
https://doi.org/10.1007/978-3-322-87580-8erested in a larger class of functions containing simultaneously .. One of our goals in this chapter will be to introduce and study this class. Although we start with F. Riesz’s definition of a measurable function, we shall later give the more general definitions of ., ., . and prove the equivalence
38#
發(fā)表于 2025-3-28 03:53:22 | 只看該作者
39#
發(fā)表于 2025-3-28 07:55:08 | 只看該作者
40#
發(fā)表于 2025-3-28 14:04:49 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 00:47
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
沅江市| 白玉县| 宁乡县| 宁津县| 广东省| 灵寿县| 如皋市| 新安县| 安西县| 永胜县| 阜新市| 眉山市| 搜索| 新蔡县| 南涧| 双牌县| 中卫市| 亳州市| 莎车县| 玉环县| 威信县| 杂多县| 铜山县| 南丹县| 修文县| 富川| 富锦市| 天等县| 犍为县| 什邡市| 甘德县| 旬阳县| 宁陕县| 广南县| 和硕县| 博乐市| 榕江县| 万源市| 万盛区| 广元市| 自治县|