找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Basic Real Analysis; Houshang H. Sohrab Textbook 20031st edition Birkh?user Boston 2003 Arithmetic.Cardinal number.Counting.Equivalence.ca

[復(fù)制鏈接]
樓主: Grievous
31#
發(fā)表于 2025-3-26 23:01:26 | 只看該作者
32#
發(fā)表于 2025-3-27 04:14:11 | 只看該作者
33#
發(fā)表于 2025-3-27 06:24:29 | 只看該作者
https://doi.org/10.1007/978-3-322-87580-8n are numerous and we shall not go into a detailed explanation of them. Probably the most important among them is that the space of all Riemann integrable fuctions on a compact interval [., .] ? ? is . with respect to the natural “metric”:
34#
發(fā)表于 2025-3-27 09:35:57 | 只看該作者
https://doi.org/10.1007/978-3-642-57987-5en chosen, especially when complements of sets (to be defined below) are involved in the discussion. Before defining the basic operations on sets, let us introduce a notation which will be used throughout the book.
35#
發(fā)表于 2025-3-27 17:06:56 | 只看該作者
https://doi.org/10.1007/978-3-8349-8227-8their . Here, the most important concept is that of a .. It will be used in Appendix A for a brief discussion of Cantor’s construction of real numbers from the Cauchy sequences in the set ? of rational numbers. The properties of sequences will be used in a short section on infinite series of real nu
36#
發(fā)表于 2025-3-27 19:05:26 | 只看該作者
Gegenstand der Produktionsplanung,oint, convergent sequence and Cauchy sequence. We then defined the concept of limit for general real-valued functions of a real variable, and proved that such limits can also be defined in terms of limits of sequences. Also, before introducing the related notion of ., we introduced (in Chapter 4) th
37#
發(fā)表于 2025-3-27 23:52:59 | 只看該作者
https://doi.org/10.1007/978-3-322-87580-8erested in a larger class of functions containing simultaneously .. One of our goals in this chapter will be to introduce and study this class. Although we start with F. Riesz’s definition of a measurable function, we shall later give the more general definitions of ., ., . and prove the equivalence
38#
發(fā)表于 2025-3-28 03:53:22 | 只看該作者
39#
發(fā)表于 2025-3-28 07:55:08 | 只看該作者
40#
發(fā)表于 2025-3-28 14:04:49 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 06:51
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
江川县| 吉木萨尔县| 抚松县| 庆云县| 安泽县| 吉水县| 凤翔县| 临泽县| 崇阳县| 长寿区| 铜山县| 松桃| 北碚区| 武宁县| 紫金县| 辽阳市| 屏边| 永德县| 绍兴市| 庆城县| 武冈市| 静乐县| 德阳市| 崇明县| 桃源县| 格尔木市| 汉寿县| 定边县| 鄱阳县| 广安市| 突泉县| 泌阳县| 格尔木市| 天津市| 庆云县| 盐源县| 阳曲县| 闽清县| 阳朔县| 泾阳县| 阿克苏市|