找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Basic Number Theory.; André Weil Book 19732nd edition Springer-Verlag Berlin Heidelberg 1973 Cantor.Mathematica.number theory

[復(fù)制鏈接]
樓主: Enclosure
31#
發(fā)表于 2025-3-26 22:07:12 | 只看該作者
32#
發(fā)表于 2025-3-27 03:24:10 | 只看該作者
Grundlehren der mathematischen Wissenschaftenhttp://image.papertrans.cn/b/image/181085.jpg
33#
發(fā)表于 2025-3-27 06:07:07 | 只看該作者
Basic Number Theory.978-3-662-05978-4Series ISSN 0072-7830 Series E-ISSN 2196-9701
34#
發(fā)表于 2025-3-27 13:17:15 | 只看該作者
0072-7830 Overview: 978-3-662-05978-4Series ISSN 0072-7830 Series E-ISSN 2196-9701
35#
發(fā)表于 2025-3-27 15:21:09 | 只看該作者
Janusz Biene,Daniel Kaiser,Holger Marcks finite degree . over .. If . is an .-field and ., we must have .., .., . 2; then, by corollary 3 of prop. 4, Chap. III-3, ....(x) = x+x? and ....(x) . xx?.... maps . onto ., and .... maps .. onto .., which is a subgroup of .. of index 2.
36#
發(fā)表于 2025-3-27 20:17:46 | 只看該作者
List of Scientific and Common Names,morphic to the prime field ..=./.., with which we may identify it. Then . may be regarded as a vector-space over ..; as such, it has an obviously finite dimension ?, and the number of its elements is ... If . is a subfield of a field .; with ... elements, .; may also be regarded e.g. as a left vecto
37#
發(fā)表于 2025-3-27 23:56:45 | 只看該作者
https://doi.org/10.1007/978-1-4939-0736-6an obvious way to right vector-spaces. Only vector-spaces of finite dimension will occur; it is understood that these are always provided with their “natural topology” according to corollary 1 of th. 3, Chap. I–2. By th. 3 of Chap. I–2, every subspace of such a space . is closed in .. Taking coordin
38#
發(fā)表于 2025-3-28 02:38:35 | 只看該作者
Herrschaft - Staat - Mitbestimmunglgebraic number-fields by means of their embeddings into local fields. In the last century, however, it was discovered that the methods by which this can be done may be applied with very little change to certain fields of characteristic . >1; and the simultaneous study of these two types of fields t
39#
發(fā)表于 2025-3-28 09:45:00 | 只看該作者
40#
發(fā)表于 2025-3-28 10:51:40 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 07:39
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
SHOW| 丹凤县| 连州市| 徐州市| 麻江县| 年辖:市辖区| 阳朔县| 闸北区| 甘南县| 三门峡市| 漯河市| 图木舒克市| 白城市| 鹤山市| 和政县| 文安县| 普格县| 佛教| 屏南县| 田阳县| 肇东市| 若尔盖县| 宁城县| 启东市| 泰和县| 揭阳市| 平昌县| 申扎县| 正定县| 托克托县| 滨州市| 灵璧县| 乌拉特前旗| 浑源县| 河北省| 乌鲁木齐县| 芷江| 神木县| 五峰| 临颍县| 肇源县|