找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Basic Algebraic Geometry 2; Schemes and Complex Igor R. Shafarevich Textbook 19942nd edition Springer-Verlag Berlin Heidelberg 1994 Algebr

[復(fù)制鏈接]
樓主: 傳家寶
11#
發(fā)表于 2025-3-23 11:35:09 | 只看該作者
Montaignes Begriff Der Gesundheit,d invariant point of view. On the one hand, this leads to new ideas and methods that turn out to be exceptionally fertile even for the study of the quasiprojective varieties we have worked with up to now. On the other, we arrive in this way at a generalisation of this notion that vastly extends the
12#
發(fā)表于 2025-3-23 17:16:20 | 只看該作者
Pet?r Beron und Seine Fischfibeln Chap. II, 2.3, this was proved for quasiprojective varieties, at the time the only varieties known to us. But the same arguments are valid also for arbitrary varieties. We give here a general definition; the topology of . that comes from its structure of a scheme is called its ..
13#
發(fā)表于 2025-3-23 21:24:38 | 只看該作者
14#
發(fā)表于 2025-3-23 23:25:29 | 只看該作者
15#
發(fā)表于 2025-3-24 04:50:36 | 只看該作者
16#
發(fā)表于 2025-3-24 07:26:22 | 只看該作者
Pet?r Beron und Seine Fischfibeln Chap. II, 2.3, this was proved for quasiprojective varieties, at the time the only varieties known to us. But the same arguments are valid also for arbitrary varieties. We give here a general definition; the topology of . that comes from its structure of a scheme is called its ..
17#
發(fā)表于 2025-3-24 10:55:09 | 只看該作者
18#
發(fā)表于 2025-3-24 17:36:47 | 只看該作者
19#
發(fā)表于 2025-3-24 21:58:58 | 只看該作者
Universit?ts-Gesellschaft HeidelbergIn previous sections of this book we have used the notion of quotient space to construct many important examples of complex manifolds. We now show that the notion leads to a general method of studying complex manifolds.
20#
發(fā)表于 2025-3-25 01:01:50 | 只看該作者
VarietiesIn this chapter we consider the schemes most closely related to projective varieties; they will be called algebraic varieties. This is exactly what we arrive at on attempting to give an intrinsic definition of algebraic variety.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 04:29
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
大洼县| 桦川县| 宁德市| 聊城市| 扶余县| 浦东新区| 无棣县| 浙江省| 博爱县| 饶河县| 炉霍县| 石渠县| 大丰市| 松溪县| 木里| 仲巴县| 同江市| 泰宁县| 平塘县| 阳曲县| 邹城市| 曲麻莱县| 金昌市| 肥东县| 潮安县| 洪雅县| 宜兰市| 林西县| 宁晋县| 东城区| 三都| 梁河县| 哈密市| 新巴尔虎左旗| 吉林省| 信丰县| 武宁县| 密山市| 疏附县| 靖远县| 黎平县|