找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Basic Algebraic Geometry 1; Igor R. Shafarevich Textbook 19942nd edition Springer-Verlag Berlin Heidelberg 1994 Algebraic Geometry.Algebra

[復(fù)制鏈接]
樓主: calcification
11#
發(fā)表于 2025-3-23 13:23:08 | 只看該作者
12#
發(fā)表于 2025-3-23 14:16:12 | 只看該作者
Intersection Numbers,. However, they do not say anything about the number of solutions if this number is finite. The distinction is the same as that between the theorem that roots of a polynomial exist, and the theorem that the number of roots of a polynomial equals its degree. The latter result is only true if we count
13#
發(fā)表于 2025-3-23 20:45:03 | 只看該作者
came out just as the apparatus of algebraic geometry was reaching a stage that permitted a lucid and concise account of the foundations of the subject. The author was no longer forced into the painful choice between sacrificing rigour of exposition or overloading the clear geometrical picture with c
14#
發(fā)表于 2025-3-23 22:37:09 | 只看該作者
15#
發(fā)表于 2025-3-24 04:12:41 | 只看該作者
Divisors and Differential Forms,hat is, by the points at which it is 0 or is irregular. To distinguish the roots of g from those of ., we take their multiplicities with a minus sign. Thus the function ? is given by points .., …,.. with arbitrary integer multiplicities ..,… , ...
16#
發(fā)表于 2025-3-24 07:28:46 | 只看該作者
17#
發(fā)表于 2025-3-24 11:40:10 | 只看該作者
18#
發(fā)表于 2025-3-24 15:03:51 | 只看該作者
Textbook 19942nd editionThere is thus scope for a second edition. In preparing this, I have included some additional material, rather varied in nature, and have made some small cuts, but the general character of the book remains unchanged.
19#
發(fā)表于 2025-3-24 19:40:07 | 只看該作者
20#
發(fā)表于 2025-3-25 02:12:58 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 11:14
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
三门峡市| 延津县| 宜章县| 肥东县| 宁津县| 石城县| 鹤壁市| 屏山县| 和硕县| 佛教| 柳河县| 徐州市| 南通市| 尤溪县| 柳河县| 浦东新区| 松滋市| 思南县| 彭泽县| 从化市| 辽宁省| 铜川市| 巢湖市| 思南县| 三穗县| 农安县| 贵阳市| 翼城县| 上蔡县| 普定县| 遂宁市| 闻喜县| 常德市| 田阳县| 绥阳县| 应城市| 荥经县| 聂拉木县| 扎鲁特旗| 贵港市| 固原市|