找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Basic Algebraic Geometry; Igor R. Shafarevich Book 19741st edition Springer-Verlag Berlin Heidelberg 1974 Algebraic.Basic.Manifold.algebra

[復(fù)制鏈接]
樓主: 珍愛(ài)
21#
發(fā)表于 2025-3-25 06:27:40 | 只看該作者
Heidelberger Gelehrtenlexikon 1386–1651mplex numbers ?. The example of smooth projective curves shows to what extent this space characterizes the variety .. We have shown that in this case the only invariant of .(?) is the genus of .. We can say, therefore, that the genus is the only topological invariant of a projective curve. Undoubted
22#
發(fā)表于 2025-3-25 08:26:58 | 只看該作者
https://doi.org/10.1007/978-3-642-96200-4Algebraic; Basic; Manifold; algebra; function; geometry; mathematics
23#
發(fā)表于 2025-3-25 11:53:23 | 只看該作者
978-3-540-08264-4Springer-Verlag Berlin Heidelberg 1974
24#
發(fā)表于 2025-3-25 17:30:21 | 只看該作者
https://doi.org/10.1007/978-3-663-01112-5The first chapter is concerned with a number of fundamental concepts of algebraic geometry. In the first section we analyse some examples, which prepare us for the introduction of these concepts.
25#
發(fā)表于 2025-3-25 21:04:34 | 只看該作者
26#
發(fā)表于 2025-3-26 02:26:02 | 只看該作者
Alphabetisches Verzeichnis der Professoren,In this chapter we consider schemes that are more closely connected with quasiprojective varieties. These schemes are called algebraic varieties. It is precisely this concept that we arrive at in trying to give an invariant definition of an algebraic variety.
27#
發(fā)表于 2025-3-26 05:47:10 | 只看該作者
28#
發(fā)表于 2025-3-26 08:36:56 | 只看該作者
29#
發(fā)表于 2025-3-26 15:11:07 | 只看該作者
30#
發(fā)表于 2025-3-26 16:53:51 | 只看該作者
VarietiesIn this chapter we consider schemes that are more closely connected with quasiprojective varieties. These schemes are called algebraic varieties. It is precisely this concept that we arrive at in trying to give an invariant definition of an algebraic variety.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 02:54
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
永州市| 长丰县| 嵩明县| 南通市| 天祝| 栾城县| 内丘县| 南开区| 綦江县| 茌平县| 山丹县| 岐山县| 易门县| 南郑县| 建水县| 白朗县| 庄河市| 苏尼特右旗| 双辽市| 沙坪坝区| 余江县| 多伦县| 涿州市| 师宗县| 清水县| 安陆市| 龙游县| 山阴县| 武乡县| 徐闻县| 玛沁县| 许昌县| 南华县| 外汇| 南汇区| 永年县| 金溪县| 宝坻区| 遵化市| 和龙市| 石首市|