找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Basic Algebraic Geometry; Igor R. Shafarevich Book 19741st edition Springer-Verlag Berlin Heidelberg 1974 Algebraic.Basic.Manifold.algebra

[復制鏈接]
樓主: 珍愛
21#
發(fā)表于 2025-3-25 06:27:40 | 只看該作者
Heidelberger Gelehrtenlexikon 1386–1651mplex numbers ?. The example of smooth projective curves shows to what extent this space characterizes the variety .. We have shown that in this case the only invariant of .(?) is the genus of .. We can say, therefore, that the genus is the only topological invariant of a projective curve. Undoubted
22#
發(fā)表于 2025-3-25 08:26:58 | 只看該作者
https://doi.org/10.1007/978-3-642-96200-4Algebraic; Basic; Manifold; algebra; function; geometry; mathematics
23#
發(fā)表于 2025-3-25 11:53:23 | 只看該作者
978-3-540-08264-4Springer-Verlag Berlin Heidelberg 1974
24#
發(fā)表于 2025-3-25 17:30:21 | 只看該作者
https://doi.org/10.1007/978-3-663-01112-5The first chapter is concerned with a number of fundamental concepts of algebraic geometry. In the first section we analyse some examples, which prepare us for the introduction of these concepts.
25#
發(fā)表于 2025-3-25 21:04:34 | 只看該作者
26#
發(fā)表于 2025-3-26 02:26:02 | 只看該作者
Alphabetisches Verzeichnis der Professoren,In this chapter we consider schemes that are more closely connected with quasiprojective varieties. These schemes are called algebraic varieties. It is precisely this concept that we arrive at in trying to give an invariant definition of an algebraic variety.
27#
發(fā)表于 2025-3-26 05:47:10 | 只看該作者
28#
發(fā)表于 2025-3-26 08:36:56 | 只看該作者
29#
發(fā)表于 2025-3-26 15:11:07 | 只看該作者
30#
發(fā)表于 2025-3-26 16:53:51 | 只看該作者
VarietiesIn this chapter we consider schemes that are more closely connected with quasiprojective varieties. These schemes are called algebraic varieties. It is precisely this concept that we arrive at in trying to give an invariant definition of an algebraic variety.
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 08:08
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
离岛区| 高陵县| 河津市| 福贡县| 加查县| 东兰县| 杭锦旗| 文山县| 武平县| 沧州市| 云龙县| 太和县| 弥勒县| 眉山市| 康乐县| 叙永县| 甘谷县| 三都| 专栏| 黄山市| 花莲市| 新竹县| 黄浦区| 昌江| 青川县| 广宗县| 黎川县| 正蓝旗| 图木舒克市| 赫章县| 新建县| 油尖旺区| 苗栗市| 泊头市| 江都市| 新邵县| 抚宁县| 巴林右旗| 榕江县| 镶黄旗| 海原县|