找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Banach Space Theory; The Basis for Linear Marián Fabian,Petr Habala,Václav Zizler Textbook 2011 Springer Science+Business Media, LLC 2011 R

[復(fù)制鏈接]
樓主: commingle
41#
發(fā)表于 2025-3-28 16:02:23 | 只看該作者
Basics in Nonlinear Geometric Analysis,paces. We prove Keller’s theorem on homeomorphism of infinite-dimensional compact convex sets in Banach spaces to .. We also prove the Kadec theorem on the homeomorphism of every separable reflexive space to a Hilbert space. Then we prove some results on uniform, in particular Lipschitz, homeomorphisms.
42#
發(fā)表于 2025-3-28 19:16:20 | 只看該作者
Weakly Compactly Generated Spaces,ctly generated spaces, in short WCG spaces). We focus on their decomposition properties, renormings, and on the topological properties of their dual spaces. We prove that WCG spaces are generated by reflexive spaces. Then we study absolutely summing operators and the Dunford–Pettis property.
43#
發(fā)表于 2025-3-29 00:36:07 | 只看該作者
44#
發(fā)表于 2025-3-29 04:37:06 | 只看該作者
45#
發(fā)表于 2025-3-29 10:34:34 | 只看該作者
46#
發(fā)表于 2025-3-29 12:34:58 | 只看該作者
47#
發(fā)表于 2025-3-29 16:49:02 | 只看該作者
48#
發(fā)表于 2025-3-29 20:56:08 | 只看該作者
Zur Typologie der politischen Parteienof the local theory of Banach spaces. It is a vast and deep part of Banach space theory intimately related to probability and combinatorics. Our goal is to familiarize the reader with some of its basic notions and results that are accessible without the use of deep probabilistic tools.
49#
發(fā)表于 2025-3-30 03:04:16 | 只看該作者
50#
發(fā)表于 2025-3-30 05:59:35 | 只看該作者
Valentin L. Popov,Markus He?,Emanuel Willertroperty has several equivalent characterizations and applications. In particular, Asplund spaces are characterized by the Radon–Nikodym property of their dual spaces. As another application, we show that Lipschitz mappings from separable Banach spaces into Banach spaces with RNP are at some points G
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 09:13
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
汨罗市| 张家界市| 肇源县| 永修县| 穆棱市| 西和县| 竹北市| 通州市| 玉山县| 达孜县| 嘉禾县| 泸州市| 玉环县| 宁蒗| 新乡市| 元阳县| 凭祥市| 义乌市| 建宁县| 宜良县| 秦皇岛市| 台山市| 横山县| 获嘉县| 全州县| 油尖旺区| 沛县| 灵宝市| 秭归县| 连南| 司法| 明溪县| 扶沟县| 中宁县| 固镇县| 晋中市| 白河县| 扶余县| 阿勒泰市| 无棣县| 肇东市|