找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Banach Space Complexes; Cǎlin-Grigore Ambrozie,Florian-Horia Vasilescu Book 1995 Kluwer Academic Publishers 1995 Banach space.Operator the

[復(fù)制鏈接]
查看: 38009|回復(fù): 35
樓主
發(fā)表于 2025-3-21 17:46:04 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
期刊全稱Banach Space Complexes
影響因子2023Cǎlin-Grigore Ambrozie,Florian-Horia Vasilescu
視頻videohttp://file.papertrans.cn/181/180532/180532.mp4
學(xué)科分類Mathematics and Its Applications
圖書封面Titlebook: Banach Space Complexes;  Cǎlin-Grigore Ambrozie,Florian-Horia Vasilescu Book 1995 Kluwer Academic Publishers 1995 Banach space.Operator the
影響因子The aim of this work is to initiate a systematic study of those properties of Banach space complexes that are stable under certain perturbations. A Banach space complex is essentially an object of the form 1 op-l oP +1 ... --+ XP- --+ XP --+ XP --+ ... , where p runs a finite or infiniteinterval ofintegers, XP are Banach spaces, and oP : Xp ..... Xp+1 are continuous linear operators such that OPOp-1 = 0 for all indices p. In particular, every continuous linear operator S : X ..... Y, where X, Yare Banach spaces, may be regarded as a complex: O ..... X ~ Y ..... O. The already existing Fredholm theory for linear operators suggested the possibility to extend its concepts and methods to the study of Banach space complexes. The basic stability properties valid for (semi-) Fredholm operators have their counterparts in the more general context of Banach space complexes. We have in mind especially the stability of the index (i.e., the extended Euler characteristic) under small or compact perturbations, but other related stability results can also be successfully extended. Banach (or Hilbert) space complexes have penetrated the functional analysis from at least two apparently disjoint dire
Pindex Book 1995
The information of publication is updating

書目名稱Banach Space Complexes影響因子(影響力)




書目名稱Banach Space Complexes影響因子(影響力)學(xué)科排名




書目名稱Banach Space Complexes網(wǎng)絡(luò)公開度




書目名稱Banach Space Complexes網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Banach Space Complexes被引頻次




書目名稱Banach Space Complexes被引頻次學(xué)科排名




書目名稱Banach Space Complexes年度引用




書目名稱Banach Space Complexes年度引用學(xué)科排名




書目名稱Banach Space Complexes讀者反饋




書目名稱Banach Space Complexes讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:12:29 | 只看該作者
Book 1995nach space complex is essentially an object of the form 1 op-l oP +1 ... --+ XP- --+ XP --+ XP --+ ... , where p runs a finite or infiniteinterval ofintegers, XP are Banach spaces, and oP : Xp ..... Xp+1 are continuous linear operators such that OPOp-1 = 0 for all indices p. In particular, every con
板凳
發(fā)表于 2025-3-22 00:47:05 | 只看該作者
地板
發(fā)表于 2025-3-22 04:49:09 | 只看該作者
5#
發(fā)表于 2025-3-22 10:08:46 | 只看該作者
6#
發(fā)表于 2025-3-22 13:43:28 | 只看該作者
Preliminaries, are .-linear mappings between F-linear spaces is denoted by ... In particular, ... is the category of all real linear spaces with real linear mappings, and .. is the category of all complex linear spaces with complex linear mappings.
7#
發(fā)表于 2025-3-22 20:32:10 | 只看該作者
https://doi.org/10.1007/978-3-531-90460-3nach space complex is essentially an object of the form .where . runs a finite or infinite interval of integers, .. are Banach space, and α. : ..→.. are continuous linear operators such that α.α. = 0 for all indices .. In particular, every continuous linear operator . : .→., where ., . are Banach sp
8#
發(fā)表于 2025-3-23 00:07:19 | 只看該作者
Zur Typologie der politischen Parteien are .-linear mappings between F-linear spaces is denoted by ... In particular, ... is the category of all real linear spaces with real linear mappings, and .. is the category of all complex linear spaces with complex linear mappings.
9#
發(fā)表于 2025-3-23 02:21:47 | 只看該作者
10#
發(fā)表于 2025-3-23 09:06:56 | 只看該作者
978-94-010-4168-3Kluwer Academic Publishers 1995
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-19 01:36
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
隆回县| 洪江市| 保康县| 安顺市| 台南县| 三门县| 滦平县| 卢氏县| 方城县| 伊金霍洛旗| 漠河县| 安塞县| 团风县| 偏关县| 社旗县| 博客| 东山县| 嘉黎县| 铜鼓县| 奎屯市| 长岛县| 新乐市| 治县。| 龙胜| 伊春市| 衡阳县| 屏东县| 平湖市| 平塘县| 昭苏县| 榆中县| 新沂市| 工布江达县| 昌江| 城步| 长海县| 昔阳县| 西华县| 高要市| 赫章县| 郓城县|