找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Banach Algebras and Several Complex Variables; John Wermer Textbook 19762nd edition Springer Science+Business Media New York 1976 Banach.B

[復(fù)制鏈接]
樓主: lumbar-puncture
21#
發(fā)表于 2025-3-25 05:00:40 | 只看該作者
Wirtschaft als funktionales TeilsystemAs the two-dimensional analogue of an are in .., we take a disk in .. defined as follows. Let . be the closed unit disk in the ζ-plane and let ..,…, .. be continuous functions defined on .. Assume that the map ζ → (..(ζ),…, ..(ζ)) is one to one on .. The image . of . under this map we call a . in ...
22#
發(fā)表于 2025-3-25 08:53:37 | 只看該作者
https://doi.org/10.1007/978-3-531-90905-9Given Banach algebras ?. and ?. with maximal ideal spaces .. and .., if ?. and ?. are isomorphic as algebras, then .. and .. are homeomorphic. It is thus to be expected that the topology of . (?) is reflected in the algebraic structure of ?, for an arbitrary Banach algebra ?.
23#
發(fā)表于 2025-3-25 12:58:03 | 只看該作者
24#
發(fā)表于 2025-3-25 19:33:17 | 只看該作者
https://doi.org/10.1007/978-3-642-90965-8Let . be a compact set in .. which lies on a smooth .-dimensional (real) submanifold ∑ of ... Assume that . is polynomially convex. Under what conditions on ∑ can we conclude that .?
25#
發(fā)表于 2025-3-25 22:18:30 | 只看該作者
https://doi.org/10.1007/978-3-662-32915-3In Sections 13, 14 and 17 we have studied polynomial approximation on certain kinds of .-dimensional manifolds in C.. In this Section we consider the case . Let ∑ be a .-dimensional submanifold of an open set in C. with .. Let . be a compact set which lies on ∑ and contains a relatively open subset of ∑.
26#
發(fā)表于 2025-3-26 01:45:30 | 只看該作者
Preliminaries and Notations,Let . be a compact Hausdorff space.
27#
發(fā)表于 2025-3-26 05:00:43 | 只看該作者
28#
發(fā)表于 2025-3-26 09:09:26 | 只看該作者
Operational Calculus in One Variable,Let ? denote the algebra of all function . on –π≤θ≤π, with
29#
發(fā)表于 2025-3-26 12:57:53 | 只看該作者
30#
發(fā)表于 2025-3-26 17:12:21 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 07:25
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
武城县| 吴川市| 沙雅县| 襄城县| 都昌县| 通许县| 靖远县| 宝丰县| 依安县| 大洼县| 依安县| 天台县| 宿松县| 西畴县| 科技| 五大连池市| 读书| 台北市| 香港| 新兴县| 石城县| 昭通市| 昌宁县| 白银市| 蚌埠市| 湟源县| 雅安市| 即墨市| 平利县| 洛隆县| 察雅县| 天长市| 鹤庆县| 鲜城| 当雄县| 军事| 广南县| 齐河县| 博乐市| 蓬溪县| 仪陇县|