找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: BRST Symmetry and de Rham Cohomology; Soon-Tae Hong Book 2015 Springer Science+Business Media Dordrecht 2015 BRST Extension.BRST Symmetry.

[復(fù)制鏈接]
查看: 31955|回復(fù): 40
樓主
發(fā)表于 2025-3-21 19:11:48 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
期刊全稱BRST Symmetry and de Rham Cohomology
影響因子2023Soon-Tae Hong
視頻videohttp://file.papertrans.cn/181/180150/180150.mp4
發(fā)行地址Clearly describes the Hamiltonian quantization for constrained physical systems.Bridges the gap between the development and application of advanced Dirac quantization associated with BRST symmetries.A
圖書(shū)封面Titlebook: BRST Symmetry and de Rham Cohomology;  Soon-Tae Hong Book 2015 Springer Science+Business Media Dordrecht 2015 BRST Extension.BRST Symmetry.
影響因子.This book provides an advanced introduction to extended theories of quantum field theory and algebraic topology, including Hamiltonian quantization associated with some geometrical constraints, symplectic embedding and Hamilton-Jacobi quantization and Becci-Rouet-Stora-Tyutin (BRST) symmetry, as well as de Rham cohomology. It offers a critical overview of the research in this area and unifies the existing literature, employing a consistent notation..Although the results presented apply in principle to all alternative quantization schemes, special emphasis is placed on the BRST quantization for constrained physical systems and its corresponding de Rham cohomology group structure.?These were studied by theoretical physicists from the early 1960s and appeared in attempts to quantize rigorously some physical theories such as solitons and other models subject to geometrical constraints. In particular, phenomenological soliton theories such as Skyrmion and chiral bag models have seen a revival following experimental data from the SAMPLE and HAPPEX Collaborations and these are discussed. The book describes how these model predictions were shown to include rigorous treatments of geometric
Pindex Book 2015
The information of publication is updating

書(shū)目名稱BRST Symmetry and de Rham Cohomology影響因子(影響力)




書(shū)目名稱BRST Symmetry and de Rham Cohomology影響因子(影響力)學(xué)科排名




書(shū)目名稱BRST Symmetry and de Rham Cohomology網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱BRST Symmetry and de Rham Cohomology網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱BRST Symmetry and de Rham Cohomology被引頻次




書(shū)目名稱BRST Symmetry and de Rham Cohomology被引頻次學(xué)科排名




書(shū)目名稱BRST Symmetry and de Rham Cohomology年度引用




書(shū)目名稱BRST Symmetry and de Rham Cohomology年度引用學(xué)科排名




書(shū)目名稱BRST Symmetry and de Rham Cohomology讀者反饋




書(shū)目名稱BRST Symmetry and de Rham Cohomology讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:32:42 | 只看該作者
Hamiltonian Quantization with Constraints,guity in its energy spectrum due arbitrary shift of canonical momenta. In this chapter, we show that this spectrum obtained by the Dirac method can be consistent with that of the improved Dirac Hamiltonian formalism at the level of the first class constraint by fixing ambiguity, and then we discuss
板凳
發(fā)表于 2025-3-22 01:32:39 | 只看該作者
地板
發(fā)表于 2025-3-22 04:50:25 | 只看該作者
Hamiltonian Quantization and BRST Symmetry of Soliton Models, Hamiltonian by introducing the first class physical fields. Furthermore, following the BFV formalism?[23, 26, 79–82], we derive BRST invariant gauge fixed Lagrangian through standard path integral procedure. Introducing collective coordinates, we also study semi-classical quantization of soliton ba
5#
發(fā)表于 2025-3-22 11:59:11 | 只看該作者
Hamiltonian Quantization and BRST Symmetry of Skyrmion Models, baryons. We show that the energy spectrum of this Skyrmion obtained by the Dirac quantization method with a suggestion of generalized momenta is consistent with result of the improved Dirac Hamiltonian formalism?[.]. We next apply the improved Dirac Hamiltonian method to the SU(2) Skyrmion and dire
6#
發(fā)表于 2025-3-22 13:21:28 | 只看該作者
Hamiltonian Structure of Other Models,he so-called superqualitons. We then argue that ground state of the color-flavor-locking color superconductor is .-matter, which is the lowest energy state for a given fixed baryon number. From this .-matter, we calculate a minimal energy to create a superqualiton and find that it is numerically of
7#
發(fā)表于 2025-3-22 19:30:29 | 只看該作者
Phenomenological Soliton,rules to yield theoretical predictions comparable to recent experimental data of SAMPLE collaboration. We also study sum rules for flavor singlet axial currents for EMC experiment in modified quark model?[.].
8#
發(fā)表于 2025-3-23 01:13:42 | 只看該作者
De Rham Cohomology in Constrained Physical System,iguration of Dirac quantization, by including .-exact gauge fixing term and Faddeev-Popov ghost term, we find the BRST invariant Hamiltonian to investigate de Rham cohomology group structure for the monopole system. Bogomol’nyi bound is also discussed in terms of the first class topological charge d
9#
發(fā)表于 2025-3-23 01:27:37 | 只看該作者
Hamiltonian Structure of Other Models,the order of twice of the Cooper gap. Upon quantizing zero modes of superqualitons, we find that superqualitons have the same quantum number as the gaped quarks and furthermore all the high spin states of the superqualitons are absent in effective bosonic description of the color-flavor-locking color superconductor?[.].
10#
發(fā)表于 2025-3-23 07:57:16 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 08:51
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
木兰县| 金坛市| 隆化县| 宁国市| 邵阳县| 宾川县| 通辽市| 阿克陶县| 宁武县| 福海县| 农安县| 和硕县| 博乐市| 江西省| 郑州市| 日喀则市| 习水县| 福海县| 桃园市| 滦平县| 大港区| 鄂托克旗| 陆丰市| 临桂县| 高阳县| 财经| 金塔县| 吐鲁番市| 横山县| 八宿县| 乐山市| 广丰县| 井冈山市| 孟村| 江都市| 多伦县| 沅江市| 太仆寺旗| 耒阳市| 佛山市| 合水县|